Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a87db0e4a6869e381cc700441b33a85c5f164c59af032ac468ba5e63baeb990
MD5 33b55b41ce83b8d30e1a89ce38ff1c42
BLAKE2b-256 bceee4192780186682da3a28eca05a9547ee201604b62e40bacdb6abb9b1c910

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2c11d287718fe8338be67135f3ea95f30305396662430beb489a5238e8b7b661
MD5 ee7cc659819bfa19533c1a8ca98c8862
BLAKE2b-256 e08fa41553eb8fe8415b4dc4254eff84d88c8123f5593537763b9963909d426f

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c67f21d84fee792ff162daf42a9a3be355e86630570982f81459f7f976fe85e2
MD5 7d80e5da030c8cdb90d7560c52bdfff6
BLAKE2b-256 541bd8d353fd56c1d8159c24f2f09142859aaae63260a3e942ef0900164e41de

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5ebe2eb8d0a701c32336d3190f7c34d13cd55ce82dfa96947891e34411da984
MD5 52f44c61bbf0ac9dc1aa9431c8814afd
BLAKE2b-256 b5131adc628bd01ab39c2c4893105e50d5abf891f7190dee899885e629021ab6

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ad850bc90d4764ce9b25b8b9288605a695985efcce3fbf10b7586dad27bbc282
MD5 749947f2a664f8fad673c30e775b61c0
BLAKE2b-256 dda67c96bd5d0c9cbfe217cdbfd648ab5df640b1d911729481fab0fdde7118ff

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aca142b920abde598e61d939354ab50f18d0c87ae649ba8bec593dae5e21ee1c
MD5 d464999726280b8d173e230411bfcb01
BLAKE2b-256 37a9d7f1b23cabc78c0782fd9a04da59e4e83fbc4238d899092b114c8f134275

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8e2a4b78b92d6c735565256009df902b98db7353f0eae79ef085e73f278bdd3
MD5 b1542bac2994f153b83a77e43b043418
BLAKE2b-256 4f35b4fa6addbb3f69f4dd8c3e2d1e028e2fd68616772c79d8ec8022409b4d14

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e7d40c91680a3584371a59363474a44a8fd18920d6c40ecf95db32351be741bc
MD5 de0813fe5bd12bbb97475656b8e5d2ec
BLAKE2b-256 578fa3d3469ab2470fe7654410d10e053d173402add8145b007dbdc01b38298c

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240716025737-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b7e5f8699c8bde071bb5bbc8f801e2a60f173f3a5ef688757a23d25d563316f9
MD5 8f0f82801254d658fcf2ea43e0bd7f18
BLAKE2b-256 bdbcb9963439bf83b622dabcdef6dc38eddc7c623a310480980bb30371b0bc73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page