Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffa4e389e8d5ee20e2f26d2d7678c20eb7396d3dd19ea84e4c02cc5d7596618c
MD5 e1528706f2436e7de97e5d2de25a630e
BLAKE2b-256 af09ab0416b4902225b8a99f0df085d4d7ad253b877865de80c0db4fdf256dac

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5f64f0f6f4e4cfe0cb7288375eeffb4900a20acbfaf22333d2ec381951187ff2
MD5 6df24858ae15b31ef9f3d6420d5894f5
BLAKE2b-256 6838a8b11779357537a3c5312028e358bbab5edcba5cb1a58a6d4447f1d75fa6

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fc8be39964f1294ef092eba8da9decf4b45cbc741ff2fe6cd3dd43c0e16a2c88
MD5 f03ebc2e9f32a5a0219f4fec97057a25
BLAKE2b-256 c510b68c3af7de82ab3922535f32a939e35940df0a62f8efcbdf33101826dfe6

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2da688de5fdcde77960cd9aaf8ceb5c03147b2ccc0021485472d1a7d7255e825
MD5 e4f00104ed8e1df39599e3940bb5258d
BLAKE2b-256 882b43be3e66a6c31bd13c447463bd5521af0603ec6a199fa27cafc34cf102f0

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 115c396a3311d774b7ed1e63abe7a191dbe01e9f84d5958b24af216e6acc67e7
MD5 b5019883880151a2c5c492993c5a9332
BLAKE2b-256 404ea7168ea122f857ef20de9a92b2958329e5e5dd4f6bf8c3d5d551919de7f5

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cc0cc1c54ce6f53d13d6f2339a071e148fdb58425060799492ca968ebc70e63a
MD5 e000e06a032bebe7b856e4aaac93883e
BLAKE2b-256 494ac34a674f3ea6b6dae06855358f4e739ea329aa2ccadb705933fd6d144101

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be56832d8ecef2ea46b1b7e0b80d398e8313b03d3369ceecad184298d80954a7
MD5 89460357f6a672d5568d0d541ac383b4
BLAKE2b-256 c96567085d6aeb0d59456fd57ce8914e9b8461184ad0aa0673744834f41d92ce

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 34ced8c575be851b58f4f60d8aab6450f1e24b940e6e89a3224ed4d3f06db31a
MD5 eee02de5a834bd281bf1b752ff152e69
BLAKE2b-256 a62c7d2141917c68571c7caa956b34b6b3c5351ab39837aff5d941957fdb0cc6

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240722212032-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6b4f1e1613cd84a18f792d3d5f841aedcbbff81a3b19e78c4e00cfe9a4e2b72f
MD5 4514ec1b0be39a9a97d19290356a3e54
BLAKE2b-256 1bb7cd343183f661e2a4cd8050e86510f9c51046aeffce18479074f543e05be5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page