Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcca00807ce3c2857bd29e2499077a7ed9d8fe371e3824087d6879d803945dad
MD5 4a3c4ddf87958ed517269d13c382bb00
BLAKE2b-256 581be1b347807c6ffe6f0819eb0d0957971be0a64908edb478d46443444f00f0

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 26504a2e0ad69ce54d9edef66bdcb72723f3c6601cad5acc9f8e606416ddebcb
MD5 0c0d88fcdcfce0e54fd0680bcd78d80b
BLAKE2b-256 a66280f5656582efa0fbb3bda5cf570965b372e2cf354b74b3bc0c7efd723779

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9cf7b5f0e70280a7684cce6759193bcca3f8e9edb01df15f1ecd2d28062ea746
MD5 526345d004996f8fad8d4681d040c9f6
BLAKE2b-256 03608fe789e1a5320d52e23884cb89bdf680f13742b62730e3edb3a627af8877

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0cff3f701f37cd18b3ea74b32b16e9c454923bba4a0be39b0476c7ea835e3ab
MD5 95cd8549d3e458aa8e09dc1c607067b9
BLAKE2b-256 600d27dce9b00e6787f34980e7acf9fe99b5fa8e7232bc9366f810e6fca80402

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 423cf167b19f063f0e39b6ba9c9846ed18354f06c2d08418a2bc4679a4459fc2
MD5 16160776403745b1db5926cc455be538
BLAKE2b-256 acd1ac8918915f73d81d061530de9bb3d809a11e911c383469bd6a9d65cbb92c

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01181588cc0fc958540daf1b9680747f00d6d0e0e1f7458b90f411eb7ea29796
MD5 8577db52125db151c0542c8f1cbfcc08
BLAKE2b-256 e9a0f6877aa6ab3c2c0a413615d0c755fd97dad348939ac23fea54e2eb82f298

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be6de65ecaaa2059873a1adae2149bbac547ad3b7f4093f1dce413d443f669a4
MD5 fd434ac20b49014f9b0530e410daec0b
BLAKE2b-256 c3ff268758cea7aee3c6f178cb0841e966deafc0713805a2086d6a6b23a54f42

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 26cd164ac148f61afb969afa8273b5a7d70ff750dd88e6499e61672696cdc1c3
MD5 917fcbf1a80d9a324c61b041649020c7
BLAKE2b-256 aaeb1462bc54e83a2b2df85df4012b4fac7eb8c108e47ca334f6d865493af7ed

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240730200502-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7de6069fc33b4e922d1e4fea6074dfc3fbbecbebe7a9c6b32c256e6e9f2809b3
MD5 4a4943b9f1b8f4bda536539670563c76
BLAKE2b-256 95fae4c033822170b8dfeb44c162198d98a5e7843e8ef77f009d7ec85006670f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page