tfrecords: fast and simple reader and writer
Project description
tfrecords
simplify and transplant the tfrecord and table
update information
2023-07-01: Add arrow parquet
2022-10-30: Add lmdb leveldb read and writer and add record batch write
2022-10-17: Add shared memory for record to read mode with more accelerated Reading.
2022-02-01: simplify and transplant the tfrecord dataset
1. record read and write demo , with_share_memory flags will Accelerated Reading
# -*- coding: utf-8 -*-
# @Time : 2022/9/8 15:49
import tfrecords
options = tfrecords.TFRecordOptions(compression_type=tfrecords.TFRecordCompressionType.NONE)
def test_write(filename, N=3, context='aaa'):
with tfrecords.TFRecordWriter(filename, options=options) as file_writer:
batch_data = []
for i in range(N):
d = context + '____' + str(i)
batch_data.append(d)
if (i + 1) % 100 == 0:
file_writer.write_batch(batch_data)
batch_data.clear()
if len(batch_data):
file_writer.write_batch(batch_data)
batch_data.clear()
def test_record_iterator(example_paths):
print('test_record_iterator')
for example_path in example_paths:
iterator = tfrecords.tf_record_iterator(example_path, options=options, skip_bytes=0, with_share_memory=True)
offset_list = iterator.read_offsets(0)
count = iterator.read_count(0)
print(count)
num = 0
for iter in iterator:
num += 1
print(iter)
def test_random_reader(example_paths):
print('test_random_reader')
for example_path in example_paths:
file_reader = tfrecords.tf_record_random_reader(example_path, options=options, with_share_memory=True)
last_pos = 0
while True:
try:
x, pos = file_reader.read(last_pos)
print(x, pos)
last_pos = pos
except Exception as e:
break
def test_random_reader2(example_paths):
print('test_random_reader2')
for example_path in example_paths:
file_reader = tfrecords.tf_record_random_reader(example_path, options=options, with_share_memory=True)
skip_bytes = 0
offset_list = file_reader.read_offsets(skip_bytes)
for offset, length in offset_list:
x, _ = file_reader.read(offset)
print(x)
test_write('d:/example.tfrecords0', 3, 'file0')
example_paths = tfrecords.glob('d:/example.tfrecords*')
print(example_paths)
test_record_iterator(example_paths)
print()
test_random_reader(example_paths)
print()
test_random_reader2(example_paths)
print()
2. leveldb read and write demo
# -*- coding: utf-8 -*-
# @Time : 2022/9/8 15:49
from tfrecords import LEVELDB
db_path = 'd:/example_leveldb'
def test_write(db_path):
options = LEVELDB.LeveldbOptions(create_if_missing=True, error_if_exists=False)
file_writer = LEVELDB.Leveldb(db_path, options)
keys, values = [], []
for i in range(30):
keys.append(b"input_" + str(i).encode())
keys.append(b"label_" + str(i).encode())
values.append(b"xiaoming" + str(i).encode())
values.append(b"zzs" + str(i).encode())
if (i + 1) % 1000 == 0:
file_writer.put_batch(keys, values)
keys.clear()
values.clear()
if len(keys):
file_writer.put_batch(keys, values)
keys.clear()
values.clear()
file_writer.close()
def test_read(db_path):
options = LEVELDB.LeveldbOptions(create_if_missing=False, error_if_exists=False)
reader = LEVELDB.Leveldb(db_path, options)
def show():
it = reader.get_iterater(reverse=False)
i = 0
for item in it:
print(i, item)
i += 1
def test_find(key):
value = reader.get(key)
print('find', type(value), value)
show()
test_find(b'input_0')
test_find(b'input_5')
test_find(b'input_10')
reader.close()
test_write(db_path)
test_read(db_path)
3. lmdb read and write demo
# -*- coding: utf-8 -*-
# @Time : 2022/9/8 15:49
from tfrecords import LMDB
db_path = 'd:/example_lmdb'
def test_write(db_path):
options = LMDB.LmdbOptions(env_open_flag=0,
env_open_mode=0o664, # 8进制表示
txn_flag=0,
dbi_flag=0,
put_flag=0)
file_writer = LMDB.Lmdb(db_path, options, map_size=1024 * 1024 * 10)
keys, values = [], []
for i in range(30):
keys.append(b"input_" + str(i).encode())
keys.append(b"label_" + str(i).encode())
values.append(b"xiaoming_" + str(i).encode())
values.append(b"zzs_" + str(i).encode())
if (i + 1) % 1000 == 0:
file_writer.put_batch(keys, values)
keys.clear()
values.clear()
if len(keys):
file_writer.put_batch(keys, values)
file_writer.close()
def test_read(db_path):
options = LMDB.LmdbOptions(env_open_flag=LMDB.LmdbFlag.MDB_RDONLY,
env_open_mode=0o664, # 8进制表示
txn_flag = 0, # LMDB.LmdbFlag.MDB_RDONLY
dbi_flag=0,
put_flag=0)
reader = LMDB.Lmdb(db_path, options, map_size=0)
def show():
it = reader.get_iterater(reverse=False)
i = 0
for item in it:
print(i, item)
i += 1
def test_find(key):
value = reader.get(key)
print('find', type(value), value)
show()
test_find('input0')
test_find('input5')
test_find(b'input10')
reader.close()
test_write(db_path)
test_read(db_path)
4. arrow demo
Stream
from tfrecords.python.io.arrow import IPC_Writer,IPC_StreamReader,arrow
path_file = "d:/tmp/data.arrow"
def test_write():
schema = arrow.schema([
arrow.field('id', arrow.int32()),
arrow.field('text', arrow.utf8())
])
a = arrow.Int32Builder()
a.AppendValues([0,1,4])
a = a.Finish().Value()
b = arrow.StringBuilder()
b.AppendValues(["aaaa","你是谁","张三"])
b = b.Finish().Value()
table = arrow.Table.Make(schema = schema,arrays=[a,b])
fs = IPC_Writer(path_file,schema,with_stream = True)
fs.write_table(table)
fs.close()
def test_read():
fs = IPC_StreamReader(path_file)
table = fs.read_all()
fs.close()
print(table)
col = table.GetColumnByName('text')
text_list = col.chunk(0)
for i in range(text_list.length()):
x = text_list.Value(i)
print(type(x), x)
test_write()
test_read()
file
from tfrecords.python.io.arrow import IPC_Writer,IPC_StreamReader,IPC_MemoryMappedFileReader,arrow
path_file = "d:/tmp/data.arrow"
def test_write():
schema = arrow.schema([
arrow.field('id', arrow.int32()),
arrow.field('text', arrow.utf8())
])
a = arrow.Int32Builder()
a.AppendValues([0,1,4])
a = a.Finish().Value()
b = arrow.StringBuilder()
b.AppendValues(["aaaa","你是谁","张三"])
b = b.Finish().Value()
table = arrow.Table.Make(schema = schema,arrays=[a,b])
fs = IPC_Writer(path_file,schema,with_stream = False)
fs.write_table(table)
fs.close()
def test_read():
fs = IPC_MemoryMappedFileReader(path_file)
for i in range(fs.num_record_batches()):
batch = fs.read_batch(i)
print(batch)
fs.close()
test_write()
test_read()
4. parquet demo
from tfrecords.python.io.arrow import ParquetWriter,IPC_StreamReader,ParquetReader,arrow
path_file = "d:/tmp/data.parquet"
def test_write():
schema = arrow.schema([
arrow.field('id', arrow.int32()),
arrow.field('text', arrow.utf8())
])
a = arrow.Int32Builder()
a.AppendValues([0, 1, 4, 5])
a = a.Finish().Value()
b = arrow.StringBuilder()
b.AppendValues(["aaaa", "你是谁", "张三", "李赛"])
b = b.Finish().Value()
table = arrow.Table.Make(schema=schema, arrays=[a, b])
fs = ParquetWriter(path_file, schema)
fs.write_table(table)
fs.close()
def test_read():
fs = ParquetReader(path_file,options=dict(buffer_size=2))
table = fs.read_table()
fs.close()
table = table.Flatten().Value()
print(table)
col = table.GetColumnByName('text')
text_list = col.chunk(0)
for i in range(text_list.length()):
x = text_list.Value(i)
print(type(x),x)
test_write()
test_read()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file tfrecords-0.2.21-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d6a51a703b82b86a3fc078130362d0a9378934526938e4150243f39e02dcf9a |
|
MD5 | 96048edaf6f701a5102269649120ca0e |
|
BLAKE2b-256 | 91abdb5c19b3c4a2b10ebf34afab484c3e49e94f829717d056a542d6e5cc0a2f |
File details
Details for the file tfrecords-0.2.21-cp312-cp312-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp312-cp312-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.12
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74614aac051d01f15d19e78f2d1bd8f0a291b02695c007404b8925095e8f1de9 |
|
MD5 | ae4165911da95721fa7c9207f07facd1 |
|
BLAKE2b-256 | 3bd333b1d8426a4510312dbbd58c86dd2e44cea9fb3f2b4d6874fa1d417a3170 |
File details
Details for the file tfrecords-0.2.21-cp312-cp312-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp312-cp312-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.12
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f01b0844e2932be2182c3a538209fbaf202d4fd5f6b6008cf18d7fe4f7908190 |
|
MD5 | ea5fca818d75648c18189d7358922105 |
|
BLAKE2b-256 | 4613fc45ba5d158be216539c5d916ae59735ca7ccdb98d088153864f158b37ac |
File details
Details for the file tfrecords-0.2.21-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30d620fc63847aa8b413c510d0dfc410c616bac1807a5fb1f48fbb35a6624110 |
|
MD5 | ba4ccb672de5a3f1e7c92768a95e18d6 |
|
BLAKE2b-256 | c1d3b1c36707a53bd3e6bf8770fd05ac334c761ca713e3d48bffb2046f897a8a |
File details
Details for the file tfrecords-0.2.21-cp311-cp311-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp311-cp311-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.11
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1afe0634c0de1037d2fb8a32074a4bbcb8e3c365be1131a390d28cfda8d767b9 |
|
MD5 | bdc6ad7cf613afbe44faddf6e251bec2 |
|
BLAKE2b-256 | e8c8f470d1d534a26c5eb4f147c5ac35458f96b43991d8fed45c5bc8a8ff7f3f |
File details
Details for the file tfrecords-0.2.21-cp311-cp311-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp311-cp311-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.11
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | be6a2f3c95c147321eb120372f0f5d87e2a95bd2f401cae2bee1ac1a56e2c85a |
|
MD5 | 55764944c1ddebeaabc6f78a092baf12 |
|
BLAKE2b-256 | 74b3ea0cdf4f985adab4b438e7733a61f0ef50bc9afed75f78716adb64f8af62 |
File details
Details for the file tfrecords-0.2.21-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c6a95959ba2ed54cec374f1b450431a66c28eea575706580157af7b815f2ae7 |
|
MD5 | 1303466736df2762b029b54c879acd18 |
|
BLAKE2b-256 | 5ba9093afaa71a02b1b4908537239929b1eb5741eb017e90cd0381a1594dc5ed |
File details
Details for the file tfrecords-0.2.21-cp310-cp310-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp310-cp310-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.10
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ca7b65d5f6bb92d3be872e8389c8270b3cb32bbc6f4065b701ce069601a57cf |
|
MD5 | 9c13c46d031aed362da2a0ad7e5e2192 |
|
BLAKE2b-256 | fa0b283d061686c6afbea12affa85a82039741023a086bf2c7a17864a2172135 |
File details
Details for the file tfrecords-0.2.21-cp310-cp310-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp310-cp310-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.10
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f653d0a0cb98d23b1354a50a3913c9e04dd49a1921d7f12d490809231bfb087 |
|
MD5 | f9a046b686665cc7c0c774cf41214a68 |
|
BLAKE2b-256 | 2456d4702c7a3e5e1dbea1166a36576ee0f7935e3bb4c5bc05fa378a5e117f36 |
File details
Details for the file tfrecords-0.2.21-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a7ecf3a664d777b8865c18131ba916d5b942330b24eb626c676cc6c2bf08891 |
|
MD5 | 508a06a155c27825369cb48af89dc0b1 |
|
BLAKE2b-256 | 417004840c0514f1df295b542eb599ca65cab787396b52b6539c681dce0acef6 |
File details
Details for the file tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da634bb1af1b0207f76ddc9deb85255c4e5e0538fda81e7a6bd36e963c786baa |
|
MD5 | 32c435c73777c7d8fdf3bf4b745f8d43 |
|
BLAKE2b-256 | 024c162dbb6b5c2bc7691c9c3a26b42b55670024435b33126393170afd1ad5ef |
File details
Details for the file tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e38685c18cb986315fec249f85f0b98adb2dc316d4ef647be7986434fc23599a |
|
MD5 | f21c16cb816ea9129cd88cee2c57e076 |
|
BLAKE2b-256 | 1a889438696d2e0b9752452cdc94b4d7cd92b51748f5a4cf6c29eb3214040d22 |
File details
Details for the file tfrecords-0.2.21-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 8.3 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69072d9631aa9540f020e761b1d8d234a72d95035b4aee72c79f6e9e00c2c818 |
|
MD5 | b14014c32cd035b9ed9ca96c33cb8b44 |
|
BLAKE2b-256 | f26a970a82a153564a02d16ff74ac204925f19d8d2c172594b4325e628809dfb |
File details
Details for the file tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8e192660283f8f37e536310663039fdef3a11b6e103204085ab7cfa25569abb |
|
MD5 | 9c61c0671b32129863f0ff110a334dfa |
|
BLAKE2b-256 | 0e26cdd8c28efbccf5f6de0b1cb2a4448fe405b4358bdd1892644636d8046d35 |
File details
Details for the file tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a87b4b11f9a851f6ac3a5720cae5e3bbcbb6936751c8dbeeb2d8c31876d98c7 |
|
MD5 | 3da3bcd432661bc41ee1d6da707a46fd |
|
BLAKE2b-256 | 2830362505dc3327eefb4442415642b979b900c4db3f10fb92118a701b6d39a1 |
File details
Details for the file tfrecords-0.2.21-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 8.2 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da7b9cff2a53ed1e55e061e6088f4b78dc6c9a8309213c6cb5a69ea114c3b6c9 |
|
MD5 | 0e717d9659d0e25bed92c762d7d1f59b |
|
BLAKE2b-256 | 5dbfc2c8ddbfbab62b6f541293c767f59ddf952ed6dca2bff5bf5ac89d69f1cf |
File details
Details for the file tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a59588401766a4f28186e2e4d53cd17a353ad4b793e8ccf00be937e2bfa9059 |
|
MD5 | 515091075784758bcca73b3a0704f265 |
|
BLAKE2b-256 | 92c8f7468eb893aea1eb77374212ca9d0839f02d948b4b2fa9a2aef0efc1b9f5 |
File details
Details for the file tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 619466a40f634a14f8aa8b9772b8e28dee2a718e590eb3c9cf2d15b30d2b6634 |
|
MD5 | 75b1d38f6543c1ab7bd64688c06d0cbe |
|
BLAKE2b-256 | c96ea44e8ebbfb6ddd4804a2bbafbb4dd2543e63a4e37df1a908ec9df0034845 |
File details
Details for the file tfrecords-0.2.21-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 8.2 MB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e468c773e166903e3a09369780af7901fa210f17bba475f636e3082e97a15966 |
|
MD5 | 3fc3e06e06b657eac4771209b2b0835a |
|
BLAKE2b-256 | 5a5166cd5c29654aae3b70d0318f1eacdf04eea4c295673e6441c20914c38067 |
File details
Details for the file tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl
- Upload date:
- Size: 17.3 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d021ca5b20ab2435cbbfe01a659fb3b9b127d2d97553ee106cfc08557b4c4dd4 |
|
MD5 | 98ba0370007780deaae944e92866cd65 |
|
BLAKE2b-256 | c074aecb0e9031c3192334acc0189ab7a7ef1d452301a0bc0d770f15de2f5881 |
File details
Details for the file tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl
.
File metadata
- Download URL: tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl
- Upload date:
- Size: 13.7 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 59e7ffae48fced7fb25c79cb02e78d9f639952ff4b1c81a5a1d0db6379c1945d |
|
MD5 | 62081dc5d73ae85649194fc87454a611 |
|
BLAKE2b-256 | 153e88ce379ac1d9b038ba58ae4c7dd15c73134328a6a95179fb84343bf2499a |