Skip to main content

tfrecords: fast and simple reader and writer

Project description

tfrecords

simplify and transplant the tfrecord and table

update information

    2023-07-01:  Add arrow parquet
    2022-10-30:  Add lmdb leveldb read and writer and add record batch write
    2022-10-17:  Add shared memory for record to read mode with more accelerated Reading.
    2022-02-01:  simplify and transplant the tfrecord dataset

1. record read and write demo , with_share_memory flags will Accelerated Reading

# -*- coding: utf-8 -*-
# @Time    : 2022/9/8 15:49

import tfrecords

options = tfrecords.TFRecordOptions(compression_type=tfrecords.TFRecordCompressionType.NONE)


def test_write(filename, N=3, context='aaa'):
    with tfrecords.TFRecordWriter(filename, options=options) as file_writer:
        batch_data = []
        for i in range(N):
            d = context + '____' + str(i)
            batch_data.append(d)
            if (i + 1) % 100 == 0:
                file_writer.write_batch(batch_data)
                batch_data.clear()
        if len(batch_data):
            file_writer.write_batch(batch_data)
            batch_data.clear()


def test_record_iterator(example_paths):
    print('test_record_iterator')
    for example_path in example_paths:
        iterator = tfrecords.tf_record_iterator(example_path, options=options, skip_bytes=0, with_share_memory=True)
        offset_list = iterator.read_offsets(0)
        count = iterator.read_count(0)
        print(count)
        num = 0
        for iter in iterator:
            num += 1
            print(iter)


def test_random_reader(example_paths):
    print('test_random_reader')
    for example_path in example_paths:
        file_reader = tfrecords.tf_record_random_reader(example_path, options=options, with_share_memory=True)
        last_pos = 0
        while True:
            try:
                x, pos = file_reader.read(last_pos)
                print(x, pos)
                last_pos = pos

            except Exception as e:
                break


def test_random_reader2(example_paths):
    print('test_random_reader2')
    for example_path in example_paths:
        file_reader = tfrecords.tf_record_random_reader(example_path, options=options, with_share_memory=True)
        skip_bytes = 0
        offset_list = file_reader.read_offsets(skip_bytes)
        for offset, length in offset_list:
            x, _ = file_reader.read(offset)
            print(x)


test_write('d:/example.tfrecords0', 3, 'file0')

example_paths = tfrecords.glob('d:/example.tfrecords*')
print(example_paths)
test_record_iterator(example_paths)
print()
test_random_reader(example_paths)
print()
test_random_reader2(example_paths)
print()

2. leveldb read and write demo

# -*- coding: utf-8 -*-
# @Time    : 2022/9/8 15:49

from tfrecords import LEVELDB

db_path = 'd:/example_leveldb'


def test_write(db_path):
    options = LEVELDB.LeveldbOptions(create_if_missing=True, error_if_exists=False)
    file_writer = LEVELDB.Leveldb(db_path, options)

    keys, values = [], []
    for i in range(30):
        keys.append(b"input_" + str(i).encode())
        keys.append(b"label_" + str(i).encode())
        values.append(b"xiaoming" + str(i).encode())
        values.append(b"zzs" + str(i).encode())
        if (i + 1) % 1000 == 0:
            file_writer.put_batch(keys, values)
            keys.clear()
            values.clear()
    if len(keys):
        file_writer.put_batch(keys, values)
        keys.clear()
        values.clear()

    file_writer.close()


def test_read(db_path):
    options = LEVELDB.LeveldbOptions(create_if_missing=False, error_if_exists=False)
    reader = LEVELDB.Leveldb(db_path, options)

    def show():
        it = reader.get_iterater(reverse=False)
        i = 0
        for item in it:
            print(i, item)
            i += 1

    def test_find(key):
        value = reader.get(key)
        print('find', type(value), value)

    show()

    test_find(b'input_0')
    test_find(b'input_5')
    test_find(b'input_10')

    reader.close()


test_write(db_path)
test_read(db_path)

3. lmdb read and write demo

# -*- coding: utf-8 -*-
# @Time    : 2022/9/8 15:49

from tfrecords import LMDB

db_path = 'd:/example_lmdb'


def test_write(db_path):
    options = LMDB.LmdbOptions(env_open_flag=0,
                               env_open_mode=0o664,  # 8进制表示
                               txn_flag=0,
                               dbi_flag=0,
                               put_flag=0)
    file_writer = LMDB.Lmdb(db_path, options, map_size=1024 * 1024 * 10)
    keys, values = [], []
    for i in range(30):
        keys.append(b"input_" + str(i).encode())
        keys.append(b"label_" + str(i).encode())
        values.append(b"xiaoming_" + str(i).encode())
        values.append(b"zzs_" + str(i).encode())
        if (i + 1) % 1000 == 0:
            file_writer.put_batch(keys, values)
            keys.clear()
            values.clear()
    if len(keys):
        file_writer.put_batch(keys, values)
    file_writer.close()


def test_read(db_path):
    options = LMDB.LmdbOptions(env_open_flag=LMDB.LmdbFlag.MDB_RDONLY,
                               env_open_mode=0o664,  # 8进制表示
                               txn_flag = 0, # LMDB.LmdbFlag.MDB_RDONLY
                               dbi_flag=0,
                               put_flag=0)
    reader = LMDB.Lmdb(db_path, options, map_size=0)

    def show():
        it = reader.get_iterater(reverse=False)
        i = 0
        for item in it:
            print(i, item)
            i += 1

    def test_find(key):
        value = reader.get(key)
        print('find', type(value), value)

    show()
    test_find('input0')
    test_find('input5')
    test_find(b'input10')
    reader.close()


test_write(db_path)
test_read(db_path)

4. arrow demo

Stream

from tfrecords.python.io.arrow import IPC_Writer,IPC_StreamReader,arrow

path_file = "d:/tmp/data.arrow"

def test_write():
    schema = arrow.schema([
        arrow.field('id', arrow.int32()),
        arrow.field('text', arrow.utf8())
    ])

    a = arrow.Int32Builder()
    a.AppendValues([0,1,4])
    a = a.Finish().Value()

    b = arrow.StringBuilder()
    b.AppendValues(["aaaa","你是谁","张三"])
    b = b.Finish().Value()

    table = arrow.Table.Make(schema = schema,arrays=[a,b])
    fs = IPC_Writer(path_file,schema,with_stream = True)
    fs.write_table(table)
    fs.close()

def test_read():
    fs = IPC_StreamReader(path_file)
    table = fs.read_all()
    fs.close()
    print(table)

    col = table.GetColumnByName('text')
    text_list = col.chunk(0)
    for i in range(text_list.length()):
        x = text_list.Value(i)
        print(type(x), x)


test_write()
test_read()

file

from tfrecords.python.io.arrow import IPC_Writer,IPC_StreamReader,IPC_MemoryMappedFileReader,arrow

path_file = "d:/tmp/data.arrow"

def test_write():
    schema = arrow.schema([
        arrow.field('id', arrow.int32()),
        arrow.field('text', arrow.utf8())
    ])

    a = arrow.Int32Builder()
    a.AppendValues([0,1,4])
    a = a.Finish().Value()

    b = arrow.StringBuilder()
    b.AppendValues(["aaaa","你是谁","张三"])
    b = b.Finish().Value()

    table = arrow.Table.Make(schema = schema,arrays=[a,b])
    fs = IPC_Writer(path_file,schema,with_stream = False)
    fs.write_table(table)
    fs.close()


def test_read():

    fs = IPC_MemoryMappedFileReader(path_file)
    for i in range(fs.num_record_batches()):
        batch = fs.read_batch(i)
        print(batch)
    fs.close()


test_write()
test_read()

4. parquet demo

from tfrecords.python.io.arrow import ParquetWriter,IPC_StreamReader,ParquetReader,arrow
path_file = "d:/tmp/data.parquet"

def test_write():
    schema = arrow.schema([
        arrow.field('id', arrow.int32()),
        arrow.field('text', arrow.utf8())
    ])

    a = arrow.Int32Builder()
    a.AppendValues([0, 1, 4, 5])
    a = a.Finish().Value()

    b = arrow.StringBuilder()
    b.AppendValues(["aaaa", "你是谁", "张三", "李赛"])
    b = b.Finish().Value()

    table = arrow.Table.Make(schema=schema, arrays=[a, b])

    fs = ParquetWriter(path_file, schema)
    fs.write_table(table)
    fs.close()

def test_read():

    fs = ParquetReader(path_file,options=dict(buffer_size=2))
    table = fs.read_table()
    fs.close()
    table = table.Flatten().Value()
    print(table)

    col = table.GetColumnByName('text')
    text_list = col.chunk(0)
    for i in range(text_list.length()):
        x = text_list.Value(i)
        print(type(x),x)


test_write()
test_read()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfrecords-0.2.21-cp312-cp312-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

tfrecords-0.2.21-cp312-cp312-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.12

tfrecords-0.2.21-cp312-cp312-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.12

tfrecords-0.2.21-cp311-cp311-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

tfrecords-0.2.21-cp311-cp311-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.11

tfrecords-0.2.21-cp311-cp311-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.11

tfrecords-0.2.21-cp310-cp310-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

tfrecords-0.2.21-cp310-cp310-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10

tfrecords-0.2.21-cp310-cp310-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.10

tfrecords-0.2.21-cp39-cp39-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9

tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.9

tfrecords-0.2.21-cp38-cp38-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8

tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.8

tfrecords-0.2.21-cp37-cp37m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m

tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.7m

tfrecords-0.2.21-cp36-cp36m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.6m

tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl (13.7 MB view details)

Uploaded CPython 3.6m

File details

Details for the file tfrecords-0.2.21-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1d6a51a703b82b86a3fc078130362d0a9378934526938e4150243f39e02dcf9a
MD5 96048edaf6f701a5102269649120ca0e
BLAKE2b-256 91abdb5c19b3c4a2b10ebf34afab484c3e49e94f829717d056a542d6e5cc0a2f

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74614aac051d01f15d19e78f2d1bd8f0a291b02695c007404b8925095e8f1de9
MD5 ae4165911da95721fa7c9207f07facd1
BLAKE2b-256 3bd333b1d8426a4510312dbbd58c86dd2e44cea9fb3f2b4d6874fa1d417a3170

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f01b0844e2932be2182c3a538209fbaf202d4fd5f6b6008cf18d7fe4f7908190
MD5 ea5fca818d75648c18189d7358922105
BLAKE2b-256 4613fc45ba5d158be216539c5d916ae59735ca7ccdb98d088153864f158b37ac

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 30d620fc63847aa8b413c510d0dfc410c616bac1807a5fb1f48fbb35a6624110
MD5 ba4ccb672de5a3f1e7c92768a95e18d6
BLAKE2b-256 c1d3b1c36707a53bd3e6bf8770fd05ac334c761ca713e3d48bffb2046f897a8a

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1afe0634c0de1037d2fb8a32074a4bbcb8e3c365be1131a390d28cfda8d767b9
MD5 bdc6ad7cf613afbe44faddf6e251bec2
BLAKE2b-256 e8c8f470d1d534a26c5eb4f147c5ac35458f96b43991d8fed45c5bc8a8ff7f3f

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be6a2f3c95c147321eb120372f0f5d87e2a95bd2f401cae2bee1ac1a56e2c85a
MD5 55764944c1ddebeaabc6f78a092baf12
BLAKE2b-256 74b3ea0cdf4f985adab4b438e7733a61f0ef50bc9afed75f78716adb64f8af62

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3c6a95959ba2ed54cec374f1b450431a66c28eea575706580157af7b815f2ae7
MD5 1303466736df2762b029b54c879acd18
BLAKE2b-256 5ba9093afaa71a02b1b4908537239929b1eb5741eb017e90cd0381a1594dc5ed

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ca7b65d5f6bb92d3be872e8389c8270b3cb32bbc6f4065b701ce069601a57cf
MD5 9c13c46d031aed362da2a0ad7e5e2192
BLAKE2b-256 fa0b283d061686c6afbea12affa85a82039741023a086bf2c7a17864a2172135

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tfrecords-0.2.21-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f653d0a0cb98d23b1354a50a3913c9e04dd49a1921d7f12d490809231bfb087
MD5 f9a046b686665cc7c0c774cf41214a68
BLAKE2b-256 2456d4702c7a3e5e1dbea1166a36576ee0f7935e3bb4c5bc05fa378a5e117f36

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3a7ecf3a664d777b8865c18131ba916d5b942330b24eb626c676cc6c2bf08891
MD5 508a06a155c27825369cb48af89dc0b1
BLAKE2b-256 417004840c0514f1df295b542eb599ca65cab787396b52b6539c681dce0acef6

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da634bb1af1b0207f76ddc9deb85255c4e5e0538fda81e7a6bd36e963c786baa
MD5 32c435c73777c7d8fdf3bf4b745f8d43
BLAKE2b-256 024c162dbb6b5c2bc7691c9c3a26b42b55670024435b33126393170afd1ad5ef

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e38685c18cb986315fec249f85f0b98adb2dc316d4ef647be7986434fc23599a
MD5 f21c16cb816ea9129cd88cee2c57e076
BLAKE2b-256 1a889438696d2e0b9752452cdc94b4d7cd92b51748f5a4cf6c29eb3214040d22

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 69072d9631aa9540f020e761b1d8d234a72d95035b4aee72c79f6e9e00c2c818
MD5 b14014c32cd035b9ed9ca96c33cb8b44
BLAKE2b-256 f26a970a82a153564a02d16ff74ac204925f19d8d2c172594b4325e628809dfb

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8e192660283f8f37e536310663039fdef3a11b6e103204085ab7cfa25569abb
MD5 9c61c0671b32129863f0ff110a334dfa
BLAKE2b-256 0e26cdd8c28efbccf5f6de0b1cb2a4448fe405b4358bdd1892644636d8046d35

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a87b4b11f9a851f6ac3a5720cae5e3bbcbb6936751c8dbeeb2d8c31876d98c7
MD5 3da3bcd432661bc41ee1d6da707a46fd
BLAKE2b-256 2830362505dc3327eefb4442415642b979b900c4db3f10fb92118a701b6d39a1

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 da7b9cff2a53ed1e55e061e6088f4b78dc6c9a8309213c6cb5a69ea114c3b6c9
MD5 0e717d9659d0e25bed92c762d7d1f59b
BLAKE2b-256 5dbfc2c8ddbfbab62b6f541293c767f59ddf952ed6dca2bff5bf5ac89d69f1cf

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a59588401766a4f28186e2e4d53cd17a353ad4b793e8ccf00be937e2bfa9059
MD5 515091075784758bcca73b3a0704f265
BLAKE2b-256 92c8f7468eb893aea1eb77374212ca9d0839f02d948b4b2fa9a2aef0efc1b9f5

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 619466a40f634a14f8aa8b9772b8e28dee2a718e590eb3c9cf2d15b30d2b6634
MD5 75b1d38f6543c1ab7bd64688c06d0cbe
BLAKE2b-256 c96ea44e8ebbfb6ddd4804a2bbafbb4dd2543e63a4e37df1a908ec9df0034845

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e468c773e166903e3a09369780af7901fa210f17bba475f636e3082e97a15966
MD5 3fc3e06e06b657eac4771209b2b0835a
BLAKE2b-256 5a5166cd5c29654aae3b70d0318f1eacdf04eea4c295673e6441c20914c38067

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d021ca5b20ab2435cbbfe01a659fb3b9b127d2d97553ee106cfc08557b4c4dd4
MD5 98ba0370007780deaae944e92866cd65
BLAKE2b-256 c074aecb0e9031c3192334acc0189ab7a7ef1d452301a0bc0d770f15de2f5881

See more details on using hashes here.

File details

Details for the file tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for tfrecords-0.2.21-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59e7ffae48fced7fb25c79cb02e78d9f639952ff4b1c81a5a1d0db6379c1945d
MD5 62081dc5d73ae85649194fc87454a611
BLAKE2b-256 153e88ce379ac1d9b038ba58ae4c7dd15c73134328a6a95179fb84343bf2499a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page