Skip to main content

A library to parallelize the execution of a function in python

Project description

tfrq - an easy way to parallelize processing a function

tfrq on github!

Stop waiting for your code to finish, start using tfrq - the effortless solution for parallelizing your functions and supercharging your performance!

This library provides an easy way to parallelize the execution of a function in python using the concurrent.futures library. It allows you to run multiple instances of a function simultaneously, making your code run faster and more efficiently. It also provides a simple API for managing the process, allowing you to cancel or wait for the completion of a task. With this library, you can easily take advantage of the power of parallel processing in python.

Here’s an example of how you can use the library to parallelize the execution of the print function:

Example 1:

from tfrq import tfrq
params = ["Hello", "World", "!"]
func = print
tfrq(func=func, params=params, num_cores=3)

Example 2:

input_list = [[1, 2], [3, 4], [5, 5], [6, 7]]
list_of_results_for_all_pairs = tfrq(sum, input_list)
print(list_of_results_for_all_pairs)  # [[3], [7], [10], [13]] -- result for each pair ordered.

This code will call the sum function in parallel with the given parameters and use all cores, so it will print the given parameters in parallel.

Example 3 - using the config parameter:

input_list = [[1, 2], [3, 4], [5, 5], [6, str(7) + '1']]  # error in final input
list_of_results_for_all_pairs = tfrq(sum, input_list)
print(list_of_results_for_all_pairs)  # [[3], [7], [10], []] -- result for each pair ordered.

input_list = [[1, 2], [3, 4], [5, 5], [6, str(7) + '1']]  # error in final input
list_of_results_for_all_pairs = tfrq(sum, input_list, config={"print_errors": True})
# unsupported operand type(s) for +: 'int' and 'str'
print(list_of_results_for_all_pairs)  # [[3], [7], [10], []] -- result for each pair ordered.

input_list = [[1, 2], [3, 4], [5, 5], [6, str(7) + '1']]  # error in final input
list_of_results_for_all_pairs, errors = tfrq(sum, input_list,
                                             config={"print_errors": True, "return_errors": True})
# unsupported operand type(s) for +: 'int' and 'str'
print(list_of_results_for_all_pairs)  # [[3], [7], [10], []] -- result for each pair ordered.
print(errors)  # [[], [], [], [TypeError("unsupported operand type(s) for +: 'int' and 'str'")]]

default config:

config = {"return_errors": False, "print_errors": True}

tfrq is an arabic word meaning “To Split”, which is the purpose of this simple method, to split the work of a single function into multiple processes as easy as possible.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfrq-2.0.8.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

tfrq-2.0.8-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file tfrq-2.0.8.tar.gz.

File metadata

  • Download URL: tfrq-2.0.8.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for tfrq-2.0.8.tar.gz
Algorithm Hash digest
SHA256 09801ccb0093e5f1a5c5042928f23dacf51f7ee41f2fb1d8a4b7376785006ca8
MD5 894ee79f45ae22b22f9146d3f8ccdd58
BLAKE2b-256 9ad741104c99ebf6d47f91bdc33a55b2a6207fe94a6d2de6a423870b1d9ee4f1

See more details on using hashes here.

File details

Details for the file tfrq-2.0.8-py3-none-any.whl.

File metadata

  • Download URL: tfrq-2.0.8-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for tfrq-2.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 2997060cd807b1bf539dcaf19ba1a0c89ffe83e06365d50fcc0c9b3be64db3cf
MD5 5c95cdb1214b9e36ebc55117c778ef8d
BLAKE2b-256 01bf33809d0fb3e29f09cb8214423af2a17d0abde5ec89414a8cf810f9c131c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page