Skip to main content

Tensor Flow Model Server

Project description

==========================================
Tensorflow gRPC and RESTful API Server
==========================================


Tensorflow Server
----------------------

Save this script to app.py

..code: python

import tfserver
import skitai
import dnn
import tensorflow as tf

pref = skitai.pref ()

pref.debug = True
pref.use_reloader = True

tf.reset_default_graph()
net = dnn.make_mlp_network(tf, phase_train=False)

pref.config.tf_config = tf.ConfigProto(
gpu_options=tf.GPUOptions (per_process_gpu_memory_fraction = 0.2),
log_device_placement = False
)
pref.config.tf_model_dir = "./exported/2"
pref.config.tf_predict_op = net ["pred"]
pref.config.tf_x= net ["x"]

skitai.mount ("/", tfserver, pref = pref)
skitai.run (port = 5000)


gRPC Client
--------------

Using grpc,

..code: python

from tfserver import cli
from tensorflow.python.framework import tensor_util

stub = cli.Proxy ("localhost", 5000)
x = np.array ([1.0, 2.0])

resp = stub.predict (
'model_name',
'signature_name',
tensor_util.make_tensor_proto(x.astype('float32'), shape=x.shape)
)
resp.y
>> [-1.5, 1.6]


Using aquests,

..code: python

from tfserver import predict_pb2, cli
import aquests
from tensorflow.python.framework import tensor_util

def print_result (resp):
cli.Response (resp.data).y
>> [-1.5, 1.6]

stub = aquests.grpc ("http://localhost:5000", callback = print_result)
x = np.array ([1.0, 2.0])

request = predict_pb2.PredictRequest()
request.model_spec.name = 'model_name'
request.model_spec.signature_name = 'signature_name'
request.inputs ["x"].CopyFrom(tensor_util.make_tensor_proto(fftseq.astype('float32'), shape=fftseq.shape))
stub.Predict (request, 10.0)


REST API
----------

Using requests,

..code: python

import requests

api = requests.session ()
resp = api.post (
"http://localhost:5000/predict",
json.dumps ({"x": getone ().astype ("float32").tolist()}),
headers = {"Content-Type": "application/json"}
)
data = json.loads (resp.text)
data ["y"]
>> [-1.5, 1.6]

Another,

..code: python

from aquests.lib import siesta

x = np.array ([1.0, 2.0])

api = siesta.API ("http://localhost:5000")
resp = api.predict ().post ({"x": x.astype ("float32").tolist()})
resp.data.y
>> [-1.5, 1.6]

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfserver-0.1a2.tar.gz (7.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page