Keras v3 (all backends) reimplementation of ViT models.
Project description
tfvit
Keras v3 (all backends) reimplementation of Vision Transformer model.
- Based on Official implementation.
- Contains pretrained weights converted from official ones.
- Contains pretrained weights converted from DinoV2+Registers.
Installation
pip install tfvit
Examples
Default usage (without preprocessing):
from tfvit import ViTBase32384 # + 11 other variants and input preprocessing
model = ViTBase32384() # by default will download imagenet[21k]-pretrained weights
model.compile(...)
model.fit(...)
Custom classification (with preprocessing):
from keras import layers, models
from tfvit import ViTBase32224
inputs = layers.Input(shape=(224, 224, 3), dtype='uint8')
outputs = ViTBase32224(include_top=False)(inputs)
outputs = layers.Dense(100, activation='softmax')(outputs)
model = models.Model(inputs=inputs, outputs=outputs)
model.compile(...)
model.fit(...)
Differences
Code simplification:
- Pretrain input height and width are always equal
- Patch height and width are always equal
Citation
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{darcet2023vitneedreg,
title={Vision Transformers Need Registers},
author={Darcet, Timothée and Oquab, Maxime and Mairal, Julien and Bojanowski, Piotr},
journal={arXiv:2309.16588},
year={2023}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tfvit-2.1.0.tar.gz
(11.6 kB
view details)
File details
Details for the file tfvit-2.1.0.tar.gz
.
File metadata
- Download URL: tfvit-2.1.0.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6887696cce7cb9ae749e64caeef6264b201553bb8b3f123552aeb130bf235c34 |
|
MD5 | 60487286f516c7e20f6ca753ef27503c |
|
BLAKE2b-256 | 28873defa8bfd98f2a6919b576b57167b9f9fd7343b447d90182a9783f5891d7 |