Skip to main content

A safe, transparent way to share and deploy scikit-learn models. Original by Mathieu Rodrigue

Project description

sklearn-json

Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.

Why sklearn-json?

Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle). Serializing model files with Pickle provides a simple attack vector for malicious users-- they give an attacker the ability to execute arbitrary code wherever the file is deserialized. For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/.

sklearn-json is a safe and transparent solution for exporting scikit-learn model files.

Safe

Export model files to 100% JSON which cannot execute code on deserialization.

Transparent

Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.

Getting Started

sklearn-json makes exporting model files to JSON simple.

Install

pip install sklearn-json

Example Usage

import sklearn_json as skljson
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)

skljson.to_json(model, file_name)
deserialized_model = skljson.from_json(file_name)

deserialized_model.predict(X)

Features

The list of supported models is rapidly growing. If you have a request for a model or feature, please reach out to support@mlrequest.com.

sklearn-json requires scikit-learn >= 0.21.3.

Supported scikit-learn Models

  • Classification

    • sklearn.linear_model.LogisticRegression
    • sklearn.linear_model.Perceptron
    • sklearn.discriminant_analysis.LinearDiscriminantAnalysis
    • sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
    • sklearn.svm.SVC
    • sklearn.naive_bayes.GaussianNB
    • sklearn.naive_bayes.MultinomialNB
    • sklearn.naive_bayes.ComplementNB
    • sklearn.naive_bayes.BernoulliNB
    • sklearn.tree.DecisionTreeClassifier
    • sklearn.ensemble.RandomForestClassifier
    • sklearn.ensemble.GradientBoostingClassifier
    • sklearn.neural_network.MLPClassifier
  • Regression

    • sklearn.linear_model.LinearRegression
    • sklearn.linear_model.Ridge
    • sklearn.linear_model.Lasso
    • sklearn.svm.SVR
    • sklearn.tree.DecisionTreeRegressor
    • sklearn.ensemble.RandomForestRegressor
    • sklearn.ensemble.GradientBoostingRegressor
    • sklearn.neural_network.MLPRegressor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

th_sklearn_json-0.1.0-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file th_sklearn_json-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: th_sklearn_json-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.7

File hashes

Hashes for th_sklearn_json-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9127305989af6796caa770b5f14c8d7bc42851140394bb372bf49768efac6e29
MD5 d92b64fcff2513d67486981a96410668
BLAKE2b-256 4846d3f973fa36586f3e839ec47ec7199c18545b9c197ff7137031c7c1a4173b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page