Skip to main content

Fuzzy String Matching with custom objects in Python

Project description

https://github.com/seatgeek/thefuzz/actions/workflows/ci.yml/badge.svg

TheFuzz

Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

Requirements

For testing

  • pycodestyle

  • hypothesis

  • pytest

Installation

Using pip via PyPI

pip install thefuzz

Using pip via GitHub

pip install git+git://github.com/seatgeek/thefuzz.git@0.19.0#egg=thefuzz

Adding to your requirements.txt file (run pip install -r requirements.txt afterwards)

git+ssh://git@github.com/seatgeek/thefuzz.git@0.19.0#egg=thefuzz

Manually via GIT

git clone git://github.com/seatgeek/thefuzz.git thefuzz
cd thefuzz
python setup.py install

Usage

>>> from thefuzz import fuzz
>>> from thefuzz import process

Simple Ratio

>>> fuzz.ratio("this is a test", "this is a test!")
    97

Partial Ratio

>>> fuzz.partial_ratio("this is a test", "this is a test!")
    100

Token Sort Ratio

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    100

Token Set Ratio

>>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
    84
>>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
    100

Partial Token Sort Ratio

>>> fuzz.token_sort_ratio("fuzzy was a bear", "wuzzy fuzzy was a bear")
    84
>>> fuzz.partial_token_sort_ratio("fuzzy was a bear", "wuzzy fuzzy was a bear")
    100

Process

>>> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
>>> process.extract("new york jets", choices, limit=2)
    [('New York Jets', 100), ('New York Giants', 78)]
>>> process.extractOne("cowboys", choices)
    ("Dallas Cowboys", 90)

You can also pass additional parameters to extractOne method to make it use a specific scorer. A typical use case is to match file paths:

>>> process.extractOne("System of a down - Hypnotize - Heroin", songs)
    ('/music/library/good/System of a Down/2005 - Hypnotize/01 - Attack.mp3', 86)
>>> process.extractOne("System of a down - Hypnotize - Heroin", songs, scorer=fuzz.token_sort_ratio)
    ("/music/library/good/System of a Down/2005 - Hypnotize/10 - She's Like Heroin.mp3", 61)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file the_fuzz_with_custom_object-0.22.1-py3-none-any.whl.

File metadata

File hashes

Hashes for the_fuzz_with_custom_object-0.22.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45bb304bb8e154486f65b520b7f382d37d135a7b6f6b8e7917b5a0de77f52f2a
MD5 3770e795193febb98e184decce60d545
BLAKE2b-256 9b46373b5f6ac8cbbcced6a44db4bb00724906d29c2acb324e46c0a3489fdcb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page