Skip to main content

This package provides a pipeline pattern implementation

Project description

TheCodeCrate's Pipeline

This package provides a pipeline pattern implementation.

The implementation is based on the excellent PHP League Pipeline package.

Installation

pip install thecodecrate-pipeline

Pipeline Pattern

The pipeline pattern allows you to easily compose sequential stages by chaining stages.

In this particular implementation the interface consists of two parts:

  • StageInterface
  • PipelineInterface

A pipeline consists of zero, one, or multiple stages. A pipeline can process a payload. During the processing the payload will be passed to the first stage. From that moment on the resulting value is passed on from stage to stage.

In the simplest form, the execution chain can be represented as a foreach:

result = payload

for stage in stages:
    result = stage(result)

return result

Effectively this is the same as:

result = stage3(stage2(stage1(payload)))

Immutability

Pipelines are implemented as immutable stage chains. When you pipe a new stage, a new pipeline will be created with the added stage. This makes pipelines easy to reuse, and minimizes side-effects.

Usage

Operations in a pipeline, stages, can be anything that satisfies the Callable type-hint. So closures and anything that's invokable is good.

pipeline = Pipeline().pipe(lambda payload: payload * 10)

# Returns 100
await pipeline.process(10)

Type hinting

Use Pipeline[PayloadType] to type hint the payload type.

pipeline = (
    (Pipeline[int]())
    .pipe(lambda payload: payload * 10)
)

# Returns 100
await pipeline.process(10)

Class based stages

Class based stages are also possible. The StageInterface[PayloadType] can be implemented which ensures you have the correct method signature for the __call__ method.

class TimesTwoStage(StageInterface[int]):
    async def __call__(self, payload: int) -> int:
        return payload * 2

class AddOneStage(StageInterface[int]):
    async def __call__(self, payload: int) -> int:
        return payload + 1

pipeline = (
    (Pipeline[int]())
    .pipe(TimesTwoStage())
    .pipe(AddOneStage())
)

# Returns 21
await pipeline.process(10)

Re-usable Pipelines

Because the PipelineInterface is an extension of the StageInterface pipelines can be re-used as stages. This creates a highly composable model to create complex execution patterns while keeping the cognitive load low.

For example, if we'd want to compose a pipeline to process API calls, we'd create something along these lines:

process_api_request = (
    (Pipeline())
    .pipe(ExecuteHttpRequest())
    .pipe(ParseJsonResponse())
)

pipeline = (
    (Pipeline())
    .pipe(ConvertToPsr7Request())
    .pipe(process_api_request)
    .pipe(ConvertToResponseDto())
)

await pipeline.process(DeleteBlogPost(post_id))

Pipeline Builders

Because pipelines themselves are immutable, pipeline builders are introduced to facilitate distributed composition of a pipeline.

The PipelineBuilder[PayloadType] builder collect stages and allow you to create a pipeline at any given time.

pipeline_builder = (
    (PipelineBuilder())
    .add(LogicalStage())
    .add(AnotherStage())
    .add(LastStage())
)

# Build the pipeline
pipeline = pipeline_builder.build()

Declarative Pipeline Stages

You can define pipeline stages declaratively by specifying them as class-level attributes. This makes it easier to set up and reuse pipelines with predefined stages.

Example:

class MyPipeline(Pipeline[int]):
    processor_class = ChainedProcessor
    stages = [
        TimesTwoStage(),
        TimesThreeStage(),
    ]

# Process the payload through the pipeline with the declared stages
result = await MyPipeline().process(5)

# Returns 30

In this example, MyPipeline declares its stages (TimesTwoStage and TimesThreeStage) directly in the class definition, making the pipeline easier to set up and more readable.

This declarative approach allows you to easily reuse pipelines across your project without needing to manually compose them every time.

Exception handling

This package is completely transparent when dealing with exceptions. In no case will this package catch an exception or silence an error. Exceptions should be dealt with on a per-case basis. Either inside a stage or at the time the pipeline processes a payload.

pipeline = Pipeline().pipe(lambda payload: payload / 0)

try:
    await pipeline.process(10)
except ValueError as e:
    # Handle the exception.
    pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thecodecrate_pipeline-1.10.0.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

thecodecrate_pipeline-1.10.0-py3-none-any.whl (25.4 kB view details)

Uploaded Python 3

File details

Details for the file thecodecrate_pipeline-1.10.0.tar.gz.

File metadata

File hashes

Hashes for thecodecrate_pipeline-1.10.0.tar.gz
Algorithm Hash digest
SHA256 be922402d0d3720dff2e54bd3d28d017c66d513e9370ffe286411343506bc2a5
MD5 dcd43cbb42da43d03f76f907878c1b45
BLAKE2b-256 48d7075c29745afee2b3551a1c749c88388c5fa9f0324ac3c8a18d45a08c47f0

See more details on using hashes here.

File details

Details for the file thecodecrate_pipeline-1.10.0-py3-none-any.whl.

File metadata

File hashes

Hashes for thecodecrate_pipeline-1.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b68089234bb1f414db9d81b5107071b754a67fced13c179541ae3926597c28e4
MD5 18445e1e6cd34ef1c05dbc8a9c813e71
BLAKE2b-256 c2291092c2a12820f380d920c404bc9be20c81bdc87142efc3af2f666764aa84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page