Skip to main content

Implementation of data mining methods that use evolutionary algorithms

Project description

thefittest

the package contains methods

  • Genetic algorithm (Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72):
    • Self-configuring genetic algorithm (Semenkin, E.S., Semenkina, M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator. LNCS, 7331, 2012, pp. 414-421);
    • SHAGA (Stanovov, Vladimir & Akhmedova, Shakhnaz & Semenkin, Eugene. (2019). Genetic Algorithm with Success History based Parameter Adaptation. 180-187. 10.5220/0008071201800187).
  • Differential evolution (Storn, Rainer & Price, Kenneth. (1995). Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Journal of Global Optimization. 23):
    • SaDE (Qin, Kai & Suganthan, Ponnuthurai. (2005). Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings. 2. 1785-1791. 10.1109/CEC.2005.1554904);
    • jDE (Brest, Janez & Greiner, Sao & Bošković, Borko & Mernik, Marjan & Zumer, Viljem. (2007). Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Evolutionary Computation, IEEE Transactions on. 10. 646 - 657. 10.1109/TEVC.2006.872133);
    • JADE (Zhang, Jingqiao & Sanderson, A.C.. (2009). JADE: Adaptive Differential Evolution With Optional External Archive. Evolutionary Computation, IEEE Transactions on. 13. 945 - 958. 10.1109/TEVC.2009.2014613);
    • SHADE (Tanabe, Ryoji & Fukunaga, Alex. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013. 71-78. 10.1109/CEC.2013.6557555).
  • Genetic programming (Koza, John R.. “Genetic programming - on the programming of computers by means of natural selection.” Complex Adaptive Systems (1993)):
    • Self-configuring genetic programming (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).

benchmarks

  • CEC2005 (Suganthan, Ponnuthurai & Hansen, Nikolaus & Liang, Jing & Deb, Kalyan & Chen, Ying-ping & Auger, Anne & Tiwari, Santosh. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Natural Computing. 341-357);
  • Symbolicregression17. 17 test regression problem from the paper (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thefittest-0.1.8.tar.gz (2.1 MB view hashes)

Uploaded Source

Built Distribution

thefittest-0.1.8-py3-none-any.whl (2.2 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page