Implementation of data mining methods that use evolutionary algorithms
Project description
thefittest
the package contains methods
- Genetic algorithm (Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72):
- Self-configuring genetic algorithm (Semenkin, E.S., Semenkina, M.E. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator. LNCS, 7331, 2012, pp. 414-421);
- SHAGA (Stanovov, Vladimir & Akhmedova, Shakhnaz & Semenkin, Eugene. (2019). Genetic Algorithm with Success History based Parameter Adaptation. 180-187. 10.5220/0008071201800187).
- Differential evolution (Storn, Rainer & Price, Kenneth. (1995). Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Journal of Global Optimization. 23):
- SaDE (Qin, Kai & Suganthan, Ponnuthurai. (2005). Self-adaptive differential evolution algorithm for numerical optimization. 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings. 2. 1785-1791. 10.1109/CEC.2005.1554904);
- jDE (Brest, Janez & Greiner, Sao & Bošković, Borko & Mernik, Marjan & Zumer, Viljem. (2007). Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Evolutionary Computation, IEEE Transactions on. 10. 646 - 657. 10.1109/TEVC.2006.872133);
- JADE (Zhang, Jingqiao & Sanderson, A.C.. (2009). JADE: Adaptive Differential Evolution With Optional External Archive. Evolutionary Computation, IEEE Transactions on. 13. 945 - 958. 10.1109/TEVC.2009.2014613);
- SHADE (Tanabe, Ryoji & Fukunaga, Alex. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013. 71-78. 10.1109/CEC.2013.6557555).
- Genetic programming (Koza, John R.. “Genetic programming - on the programming of computers by means
of natural selection.” Complex Adaptive Systems (1993)):
- Self-configuring genetic programming (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).
benchmarks
- CEC2005 (Suganthan, Ponnuthurai & Hansen, Nikolaus & Liang, Jing & Deb, Kalyan & Chen, Ying-ping & Auger, Anne & Tiwari, Santosh. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Natural Computing. 341-357);
- Symbolicregression17. 17 test regression problem from the paper (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. 10.1109/CEC.2012.6256587).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
thefittest-0.1.8.tar.gz
(2.1 MB
view hashes)
Built Distribution
Close
Hashes for thefittest-0.1.8-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bdde8b210e7b7531d58c9b72d5beab331c7b910f1bd95a3d03b33b1c9afe8190 |
|
MD5 | 344eec59a55ffb60959b94e7ed109575 |
|
BLAKE2b-256 | 2900a063e05fbe7f1d92ef5037906b2cf236e2eb7d2d476e7d39b32747abd592 |