Skip to main content

Implementation of data mining methods that use evolutionary algorithms

Project description

Thefittest

PyPI Downloads codecov.io Codacy Badge License: MIT Code style: black

Installation

pip install thefittest

Dependencies

thefittest requires:

  • python (>=3.7,<3.11);
  • numpy (>=1.21.6,<1.24);
  • numba (>=0.56.4);
  • scipy (>0.16).

The package contains methods

  • Genetic algorithm (Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72):
  • Differential evolution (Storn, Rainer & Price, Kenneth. (1995). Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Journal of Global Optimization. 23)
    • jDE (Brest, Janez & Greiner, Sao & Bošković, Borko & Mernik, Marjan & Zumer, Viljem. (2007). Self-Adapting Control Parameters in Differential Evolution: A Comparative 13. 945 - 958. http://dx.doi.org/10.1109/TEVC.2009.2014613);
    • SHADE (Tanabe, Ryoji & Fukunaga, Alex. (2013). Success-history based parameter adaptation for Differential Evolution. 2013 IEEE Congress on Evolutionary Computation, CEC 2013. 71-78. https://doi.org/10.1109/CEC.2013.6557555).
  • Genetic programming (Koza, John R.. “Genetic programming - on the programming of computers by means of natural selection.” Complex Adaptive Systems (1993)):
    • Self-configuring genetic programming (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. http://dx.doi.org/10.1109/CEC.2012.6256587).
  • Genetic programming of neural networks (GPNN) (Lipinsky L., Semenkin E., Bulletin of the Siberian State Aerospace University., 3(10), 22-26 (2006). In Russian);
  • Multilayer perceptron trained by evolutionary algorithms (Cotta, Carlos & Alba, Enrique & Sagarna, R. & Larranaga, Pedro. (2002). Adjusting Weights in Artificial Neural Networks using Evolutionary Algorithms. http://dx.doi.org/10.1007/978-1-4615-1539-5_18);

Benchmarks

  • CEC2005 (Suganthan, Ponnuthurai & Hansen, Nikolaus & Liang, Jing & Deb, Kalyan & Chen, Ying-ping & Auger, Anne & Tiwari, Santosh. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Natural Computing. 341-357);
  • Symbolicregression17. 17 test regression problem from the paper (Semenkin, Eugene & Semenkina, Maria. (2012). Self-configuring genetic programming algorithm with modified uniform crossover. 1-6. http://dx.doi.org/10.1109/CEC.2012.6256587).
  • Iris (Fisher,R. A.. (1988). Iris. UCI Machine Learning Repository. https://doi.org/10.24432/C56C76.);
  • Wine (Aeberhard,Stefan and Forina,M.. (1991). Wine. UCI Machine Learning Repository. https://doi.org/10.24432/C5PC7J.);
  • Breast Cancer Wisconsin (Diagnostic) (Wolberg,William, Mangasarian,Olvi, Street,Nick, and Street,W.. (1995). Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.);
  • Optical Recognition of Handwritten Digits (Alpaydin,E. and Kaynak,C.. (1998). Optical Recognition of Handwritten Digits. UCI Machine Learning Repository. https://doi.org/10.24432/C50P49.);

Examples

Notebooks on how to use thefittest:

If some notebooks are too big to display, you can use NBviewer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thefittest-0.2.0.tar.gz (2.4 MB view hashes)

Uploaded Source

Built Distribution

thefittest-0.2.0-py3-none-any.whl (2.5 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page