Skip to main content

AI-native scraper for multimodal LLMs.

Project description

Extract markdown and visuals from PDFs URLs, slides, videos, and more, ready for multimodal LLMs. ⚡

thepi.pe is an API that can scrape multimodal data via thepipe.scrape or extract structured data via thepipe.extract from a wide range of sources. It is built to interface with vision-language models such as GPT-4o, and works out-of-the-box with any LLM or vector database. It can be used right away with a hosted GPU cloud, or it can be self-hosted.

Features 🌟

  • Extract markdown, tables, and images from any document or webpage
  • Extract complex structured data from any document or webpage
  • Works out-of-the-box with all LLMs and RAG frameworks
  • AI-native filetype detection, layout analysis, and structured data extraction
  • Multimodal scraping for video, audio, and image sources

Get started in 5 minutes 🚀

thepi.pe can read a wide range of filetypes and web sources, so it requires a few dependencies. It also requires a strong machine (16GB+ VRAM for optimal PDF & video response times) for AI extraction features. For these reasons, we host a REST API that works out-of-the-box at thepi.pe.

For detailed setup instructions, view the docs.

pip install thepipe-api

Hosted API (Python)

from thepipe.scraper import scrape_file
from thepipe.core import chunks_to_messages
from openai import OpenAI

# scrape markdown, tables, visuals
chunks = scrape_file(filepath="paper.pdf")

# call LLM with clean, comprehensive data
client = OpenAI()
response = client.chat.completions.create(
    model="gpt-4o",
    messages=chunks_to_messages(chunks),
)

Local Installation (Python)

For a local installation, you can use the following command:

pip install -r thepipe-api[local]

And append local=True to your API calls:

chunks = scrape_url(url="https://example.com", local=True)

You can also use The Pipe from the command line:

thepipe path/to/folder --include_regex .*\.tsx

Supported File Types 📚

Source Input types Multimodal Notes
Webpage URLs starting with http, https, ftp ✔️ Scrapes markdown, images, and tables from web pages. ai_extraction available for AI layout analysis
PDF .pdf ✔️ Extracts page markdown and page images. ai_extraction available for AI layout analysis
Word Document .docx ✔️ Extracts text, tables, and images
PowerPoint .pptx ✔️ Extracts text and images from slides
Video .mp4, .mov, .wmv ✔️ Uses Whisper for transcription and extracts frames
Audio .mp3, .wav ✔️ Uses Whisper for transcription
Jupyter Notebook .ipynb ✔️ Extracts markdown, code, outputs, and images
Spreadsheet .csv, .xls, .xlsx Converts each row to JSON format, including row index for each
Plaintext .txt, .md, .rtf, etc Simple text extraction
Image .jpg, .jpeg, .png ✔️ Uses pytesseract for OCR in text-only mode
ZIP File .zip ✔️ Extracts and processes contained files
Directory any path/to/folder ✔️ Recursively processes all files in directory
YouTube Video (known issues) YouTube video URLs starting with https://youtube.com or https://www.youtube.com. ✔️ Uses pytube for video download and Whisper for transcription. For consistent extraction, you may need to modify your pytube installation to send a valid user agent header (see this issue).
Tweet URLs starting with https://twitter.com or https://x.com ✔️ Uses unofficial API, may break unexpectedly
GitHub Repository GitHub repo URLs starting with https://github.com or https://www.github.com ✔️ Requires GITHUB_TOKEN environment variable

How it works 🛠️

thepi.pe uses computer vision models and heuristics to extract clean content from the source and process it for downstream use with language models, or vision transformers. The output from thepi.pe is a list of chunks containing all content within the source document. These chunks can easily be converted to a prompt format that is compatible with any LLM or multimodal model with thepipe.core.chunks_to_messages, which gives the following format:

[
  {
    "role": "user",
    "content": [
      {
        "type": "text",
        "text": "..."
      },
      {
        "type": "image_url",
        "image_url": {
          "url": "data:image/jpeg;base64,..."
        }
      }
    ]
  }
]

You can feed these messages directly into the model, or alternatively you can use chunker.chunk_by_document, chunker.chunk_by_page, chunker.chunk_by_section, chunker.chunk_semantic to chunk these messages for a vector database such as ChromaDB or a RAG framework. A chunk can be converted to LlamaIndex Document/ImageDocument with .to_llamaindex.

⚠️ It is important to be mindful of your model's token limit. GPT-4o does not work with too many images in the prompt (see discussion here). To remedy this issue, either use an LLM with a larger context window, extract larger documents with text_only=True, or embed the chunks into vector database.

Sponsors

Book us with Cal.com

Thank you to Cal.com for sponsoring this project. Contact emmett@thepi.pe for sponsorship information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thepipe_api-1.1.3.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

thepipe_api-1.1.3-py3-none-any.whl (27.6 kB view details)

Uploaded Python 3

File details

Details for the file thepipe_api-1.1.3.tar.gz.

File metadata

  • Download URL: thepipe_api-1.1.3.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for thepipe_api-1.1.3.tar.gz
Algorithm Hash digest
SHA256 46248fa60124de463e703b16ab70188a4c74e10f64ea746b0269e31a738a5fab
MD5 94405643be5c0ec27dffc8bf904f1d86
BLAKE2b-256 9c53448893b862a5387a91886fc9002f7e61e78aaa7467068f1e02f1f432856c

See more details on using hashes here.

Provenance

File details

Details for the file thepipe_api-1.1.3-py3-none-any.whl.

File metadata

  • Download URL: thepipe_api-1.1.3-py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.8

File hashes

Hashes for thepipe_api-1.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 212017cb2d9e56ff99f0181fd7b5c0a9931781f3233e49c9d353b5a68b43ea51
MD5 a5f9d1ed492fa42b14e404618f1adb51
BLAKE2b-256 6a660f5a79293deeef9f81e51568c7a8ebab861a5f1ee7fc26031c7ff78682a1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page