Skip to main content

Exact OU processes with JAX

Project description

thermox

This package provides a very simple interface to exactly simulate Ornstein-Uhlenbeck (OU) processes of the form

$$ dx = - A(x - b) dt + \mathcal{N}(0, D dt) $$

To collect samples from this process, define sampling times ts, initial state x0, drift matrix A, displacement vector b, diffusion matrix D and a JAX random key. Then run thermox.sample:

thermox.sample(key, ts, x0, A, b, D) 

Samples are then collected by exact diagonalization (therefore there is no discretization error) and JAX scans.

You can access log-probabilities of the OU process by running thermox.log_prob:

thermox.log_prob(ts, xs, A, b, D)

which can be useful for e.g. maximum likelihood estimation of the parameters A, b and D by composing with jax.grad.

Additionally thermox provides a scipy style suit of thermodynamic linear algebra primitives: thermox.linalg.solve, thermox.linalg.inv, thermox.linalg.expm and thermox.linalg.negexpm which all simulate an OU process under the hood. More details can be found in the thermo_linear_algebra.ipynb notebook.

Contributing

Before submitting any pull request, make sure to run pre-commit run --all-files.

Example usage

Here is a simple code example for a 5-dimensional OU process:

import thermox
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt

# Set random seed
key = jax.random.PRNGKey(0)

# Timeframe
dt = 0.01
ts = jnp.arange(0, 1, dt)

# System parameters for a 5-dimensional OU process
A = jnp.array([[2.0, 0.5, 0.0, 0.0, 0.0],
               [0.5, 2.0, 0.5, 0.0, 0.0],
               [0.0, 0.5, 2.0, 0.5, 0.0],
               [0.0, 0.0, 0.5, 2.0, 0.5],
               [0.0, 0.0, 0.0, 0.5, 2.0]])

b, x0 = jnp.zeros(5), jnp.zeros(5) # Zero drift displacement vector and initial state

 # Diffusion matrix with correlations between x_1 and x_2
D = jnp.array([[2, 1, 0, 0, 0],
               [1, 2, 0, 0, 0],
               [0, 0, 2, 0, 0],
               [0, 0, 0, 2, 0],
               [0, 0, 0, 0, 2]])

# Collect samples
samples = thermox.sample(key, ts, x0, A, b, D)

plt.figure(figsize=(12, 5))
plt.plot(ts, samples, label=[f'Dimension {i+1}' for i in range(5)])
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Trajectories of 5-Dimensional OU Process')
plt.legend()
plt.show()


Citation

If you use thermox in your research, please cite the library using the following BibTeX entry:

@misc{duffield2024thermox,
  title={thermox: Exact OU processes with JAX},
  author={Duffield, Samuel and Donatella, Kaelan and Melanson, Denis},
  howpublished={\url{https://github.com/normal-computing/thermox}},
  year={2024}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thermox-0.0.3.tar.gz (14.7 kB view details)

Uploaded Source

Built Distribution

thermox-0.0.3-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file thermox-0.0.3.tar.gz.

File metadata

  • Download URL: thermox-0.0.3.tar.gz
  • Upload date:
  • Size: 14.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thermox-0.0.3.tar.gz
Algorithm Hash digest
SHA256 1e6c66b601dc5f909a6a7ce5f101c25a9d0b7192f766cba3e2548910756966d8
MD5 ccbc2430fc1af6b9f805540b5956000b
BLAKE2b-256 d2224cfb4ca9af51e5ecb65aca5af919420284b9a9549aab9f2b2c1f0b0b1108

See more details on using hashes here.

File details

Details for the file thermox-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: thermox-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thermox-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 05983204441506021ce90af4890a8d731fe7b4a58216d682f1df3cf2ab02bbd8
MD5 cedae3c6151cc10e844c79c1833dd080
BLAKE2b-256 4050b1d0b87611d46be37acaa3b523246e5991b75d6e9697a62eeaa62d3edbbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page