Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.1.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.1-py3-none-any.whl (2.2 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.1.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.1.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for thetaspaceray-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d35e09e214dea64928e0e94b1628339f00351f045869bd14ea19dc61d8f8411c
MD5 0226afc2cee591678e9778d58e25dfa8
BLAKE2b-256 0f119842aa411d914310bba59a59420bf84aeb5c32167e772072bb75490107e8

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 2.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.3

File hashes

Hashes for thetaspaceray-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d135d5661da82389bd1fd3a008a2e997882f42dd4b6b47d27987b65c06089cb7
MD5 3bf219d31213d0afadada417ec84cad3
BLAKE2b-256 4aa966a7d497175932f3ce67c78311fb56c6af20313cfb4da1bd589371d3fc18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page