Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.10.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.10-py3-none-any.whl (3.9 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.10.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.10.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.10.tar.gz
Algorithm Hash digest
SHA256 a035e614c46546ddf3b001f6d9e20b37dffd0d6c86aa89ee8f93463e3a7ebd24
MD5 4302b06dc5eca6b67514d0960d8d5cba
BLAKE2b-256 7d5e8afdb5eed21cfbaf795d79990441ac35249d2bc11c305afbeb964d380046

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 3.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 f9ffa1695bd2651c09de75e43fe395bf005b9fbac5975f72d7ba65bdbb6d6500
MD5 01b5f32de2cccae605946a1a34415b05
BLAKE2b-256 432bf7984b83b5015d85397c17ccc9e4cfca70b89e8f7136a5bbce625cc1656b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page