Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.2.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.2-py3-none-any.whl (2.2 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.2.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.2.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.2.tar.gz
Algorithm Hash digest
SHA256 c0ec02e2ede506831668542d273b7b5e4668ee4124f6de35e8e87db733958877
MD5 1453815dee9dccbf0fc46c245bdb37d0
BLAKE2b-256 556fa738e6595624a303ec5ffc5f68f32c467edd07383d95af77f9b0e3e0bb90

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 2.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f0045100a31d54cd88602ed51cec83670601ea1c30e3f6561b2892e6fd671f54
MD5 8ebc3cb60f4063e15ba56fbdd8566b38
BLAKE2b-256 90b2a7266b8022daf35c39bae777b1da3e5e66236fc38e7c920cdef8b7f0e4ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page