Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.6.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.6-py3-none-any.whl (3.9 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.6.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.6.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.6.tar.gz
Algorithm Hash digest
SHA256 27f95e78a0848226be7f64a474d0f5fcfabd17b3cebcc080446b9856f46af832
MD5 96bd9651bed9112317e952617e274995
BLAKE2b-256 e25d02a6ea2ca22cbbab385bf7d946864646f6c431fbcc1ac0c13d94c423a2ac

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 3.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 89027d879c0e83912f518dfb0a750520a1d0db6f8d1451248f016b3dd0484ed8
MD5 88b4cd11f152b1d68c92f88a7778a809
BLAKE2b-256 4e1efa1e3f876b2e14279824f8ae391ef07daf7af22f287d5eaca6d27751d37e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page