Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.7.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.7-py3-none-any.whl (3.9 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.7.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.7.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.7.tar.gz
Algorithm Hash digest
SHA256 010382f271d7bf5eab5ea70188d45daf5613968f61c2125b7c9b37c784adfbad
MD5 c43a5ac59df4f321ec983cb1d4ec70d1
BLAKE2b-256 66d16f6ccfeb86fefb99d15307e13cefc93cae7458bdbc20422b1d6a1bba84e2

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 3.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 881ae0c4740098ab96438b15463000b9a8fcff02650cd129d9bdabf30f99d633
MD5 462ba58d50dc0198a641b67c9d4f8082
BLAKE2b-256 2023de395a5ccdc7f3658ca8eb1c01c2ed8c196713ccffe9c7bae418761e537d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page