Skip to main content

Batched SpaceRay tuning.

Project description

Theta Integration for SpaceRay

Theta batching for SpaceRay package in order to submit Cobalt jobs and run spaces on different GPU nodes.

Installation

In order to use:

  • In order to use this package on ThetaGPU, you need two things:
    1. Definition of objective function
    2. argparse parsed argument space with the following required components:
    • --out: outfile
    • --json: json file of hyperparameter bounds
    • --trials: number of trials per space, not total
    • --mode: mode to apply during tune.run, defaults to "max" (optional)
    • --metric: metric used to guide tune.run search, defaults to "average_res" (optional)
    • --ray_dir: directory used to store Ray Tune logging files, defaults to /lus/theta-fs0/projects/CVD-Mol-AI/mzvyagin/ray_results (optional)

Example Usage

from argparse import ArgumentParser

### see ray tune docs for more info on how to define objective function and report metrics to ray tune
def objective_func(config):
    ### function training and testing using config from tune.run, then report results
    model.train()
    res = model.test()
    res_dict = {}
    res_dict['res'] = res
    tune.report(**res_dict)
    return res

if __name__ == "__main__":
   print("WARNING: default file locations are used to pickle arguments and hyperspaces. "
         "DO NOT RUN MORE THAN ONE EXPERIMENT AT A TIME.")
   print("Creating spaces.")
   parser = ArgumentParser("Run spaceray hyperparameter search on .")
   startTime = time.time()
   ray.init()
   parser.add_argument("-o", "--out")
   parser.add_argument("-m", "--model")
   parser.add_argument("-t", "--trials")
   parser.add_argument("-n", "--nodes", help="Number of GPU nodes to submit on.")
   parser.add_argument("-j", "--json", help="JSON file defining hyperparameter search space")
   arguments = parser.parse_args()
   theta_spaceray.run(objective_func, arguments)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thetaspaceray-0.0.8.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

thetaspaceray-0.0.8-py3-none-any.whl (3.9 kB view details)

Uploaded Python 3

File details

Details for the file thetaspaceray-0.0.8.tar.gz.

File metadata

  • Download URL: thetaspaceray-0.0.8.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.8.tar.gz
Algorithm Hash digest
SHA256 9446a0a8798fe59712326bf842df595a29b646af944454c2e079e5d195bf7d30
MD5 158a621ccd2061b7cd141ac9f140438b
BLAKE2b-256 0bffcf1e6f2bca16453d573cd020628a418b9c722436d8c05cc7ea75f3a23ff7

See more details on using hashes here.

File details

Details for the file thetaspaceray-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: thetaspaceray-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 3.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for thetaspaceray-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 45197bb1c167884355290e7b475175c915e20eb7c96928ccd1e71e745090ff9a
MD5 00748659c1a15f05a6ae995893d47a77
BLAKE2b-256 b706cd63758f0047e1926dd2506627dd81843ae5010b6807d2459c17b5990250

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page