Skip to main content

Practical Machine Learning for NLP

Project description

Thinc: Practical Machine Learning for NLP in Python

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.

Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

🔮 Read the release notes here.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Follow us on Twitter

What's where (as of v7.0.0)

Module Description
thinc.v2v.Model Base class.
thinc.v2v Layers transforming vectors to vectors.
thinc.i2v Layers embedding IDs to vectors.
thinc.t2v Layers pooling tensors to vectors.
thinc.t2t Layers transforming tensors to tensors (e.g. CNN, LSTM).
thinc.api Higher-order functions, for building networks. Will be renamed.
thinc.extra Datasets and utilities.
thinc.neural.ops Container classes for mathematical operations. Will be reorganized.
thinc.linear.avgtron Legacy efficient Averaged Perceptron implementation.

Development status

Thinc's deep learning functionality is still under active development: APIs are unstable, and we're not yet ready to provide usage support. However, if you're already quite familiar with neural networks, there's a lot here you might find interesting. Thinc's conceptual model is quite different from TensorFlow's. Thinc also implements some novel features, such as a small DSL for concisely wiring up models, embedding tables that support pre-computation and the hashing trick, dynamic batch sizes, a concatenation-based approach to variable-length sequences, and support for model averaging for the Adam solver (which performs very well).

No computational graph – just higher order functions

The central problem for a neural network implementation is this: during the forward pass, you compute results that will later be useful during the backward pass. How do you keep track of this arbitrary state, while making sure that layers can be cleanly composed?

Most libraries solve this problem by having you declare the forward computations, which are then compiled into a graph somewhere behind the scenes. Thinc doesn't have a "computational graph". Instead, we just use the stack, because we put the state from the forward pass into callbacks.

All nodes in the network have a simple signature:

f(inputs) -> {outputs, f(d_outputs)->d_inputs}

To make this less abstract, here's a ReLu activation, following this signature:

def relu(inputs):
    mask = inputs > 0
    def backprop_relu(d_outputs, optimizer):
        return d_outputs * mask
    return inputs * mask, backprop_relu

When you call the relu function, you get back an output variable, and a callback. This lets you calculate a gradient using the output, and then pass it into the callback to perform the backward pass.

This signature makes it easy to build a complex network out of smaller pieces, using arbitrary higher-order functions you can write yourself. To make this clearer, we need a function for a weights layer. Usually this will be implemented as a class — but let's continue using closures, to keep things concise, and to keep the simplicity of the interface explicit.

The main complication for the weights layer is that we now have a side-effect to manage: we would like to update the weights. There are a few ways to handle this. In Thinc we currently pass a callable into the backward pass. (I'm not convinced this is best.)

import numpy

def create_linear_layer(n_out, n_in):
    W = numpy.zeros((n_out, n_in))
    b = numpy.zeros((n_out, 1))

    def forward(X):
        Y = W @ X + b
        def backward(dY, optimizer):
            dX = W.T @ dY
            dW = numpy.einsum('ik,jk->ij', dY, X)
            db = dY.sum(axis=0)

            optimizer(W, dW)
            optimizer(b, db)

            return dX
        return Y, backward
    return forward

If we call Wb = create_linear_layer(5, 4), the variable Wb will be the forward() function, implemented inside the body of create_linear_layer(). The Wb instance will have access to the W and b variable defined in its outer scope. If we invoke create_linear_layer() again, we get a new instance, with its own internal state.

The Wb instance and the relu function have exactly the same signature. This makes it easy to write higher order functions to compose them. The most obvious thing to do is chain them together:

def chain(*layers):
    def forward(X):
        backprops = []
        Y = X
        for layer in layers:
            Y, backprop = layer(Y)
            backprops.append(backprop)
        def backward(dY, optimizer):
            for backprop in reversed(backprops):
                dY = backprop(dY, optimizer)
            return dY
        return Y, backward
    return forward

We could now chain our linear layer together with the relu activation, to create a simple feed-forward network:

Wb1 = create_linear_layer(10, 5)
Wb2 = create_linear_layer(3, 10)

model = chain(Wb1, relu, Wb2)

X = numpy.random.uniform(size=(5, 4))

y, bp_y = model(X)

dY = y - truth
dX = bp_y(dY, optimizer)

This conceptual model makes Thinc very flexible. The trade-off is that Thinc is less convenient and efficient at workloads that fit exactly into what TensorFlow etc. are designed for. If your graph really is static, and your inputs are homogenous in size and shape, Keras will likely be faster and simpler. But if you want to pass normal Python objects through your network, or handle sequences and recursions of arbitrary length or complexity, you might find Thinc's design a better fit for your problem.

Quickstart

Thinc should install cleanly with both pip and conda, for Pythons 2.7+ and 3.5+, on Linux, macOS / OSX and Windows. Its only system dependency is a compiler tool-chain (e.g. build-essential) and the Python development headers (e.g. python-dev).

pip install thinc

For GPU support, we're grateful to use the work of Chainer's cupy module, which provides a numpy-compatible interface for GPU arrays. However, installing Chainer when no GPU is available currently causes an error. We therefore do not list Chainer as an explicit dependency — so building Thinc for GPU requires some extra steps:

export CUDA_HOME=/usr/local/cuda-8.0 # Or wherever your CUDA is
export PATH=$PATH:$CUDA_HOME/bin
pip install chainer
python -c "import cupy; assert cupy" # Check it installed
pip install thinc_gpu_ops thinc # Or `thinc[cuda]`
python -c "import thinc_gpu_ops" # Check the GPU ops were built

The rest of this section describes how to build Thinc from source. If you have Fabric installed, you can use the shortcut:

git clone https://github.com/explosion/thinc
cd thinc
fab clean env make test

You can then run the examples as follows:

fab eg.mnist
fab eg.basic_tagger
fab eg.cnn_tagger

Otherwise, you can build and test explicitly with:

git clone https://github.com/explosion/thinc
cd thinc

virtualenv .env
source .env/bin/activate

pip install -r requirements.txt
python setup.py build_ext --inplace
py.test thinc/

And then run the examples as follows:

python examples/mnist.py
python examples/basic_tagger.py
python examples/cnn_tagger.py

Usage

The Neural Network API is still subject to change, even within minor versions. You can get a feel for the current API by checking out the examples. Here are a few quick highlights.

1. Shape inference

Models can be created with some dimensions unspecified. Missing dimensions are inferred when pre-trained weights are loaded or when training begins. This eliminates a common source of programmer error:

# Invalid network — shape mismatch
model = chain(ReLu(512, 748), ReLu(512, 784), Softmax(10))

# Leave the dimensions unspecified, and you can't be wrong.
model = chain(ReLu(512), ReLu(512), Softmax())

2. Operator overloading

The Model.define_operators() classmethod allows you to bind arbitrary binary functions to Python operators, for use in any Model instance. The method can (and should) be used as a context-manager, so that the overloading is limited to the immediate block. This allows concise and expressive model definition:

with Model.define_operators({'>>': chain}):
    model = ReLu(512) >> ReLu(512) >> Softmax()

The overloading is cleaned up at the end of the block. A fairly arbitrary zoo of functions are currently implemented. Some of the most useful:

  • chain(model1, model2): Compose two models f(x) and g(x) into a single model computing g(f(x)).
  • clone(model1, int): Create n copies of a model, each with distinct weights, and chain them together.
  • concatenate(model1, model2): Given two models with output dimensions (n,) and (m,), construct a model with output dimensions (m+n,).
  • add(model1, model2): add(f(x), g(x)) = f(x)+g(x)
  • make_tuple(model1, model2): Construct tuples of the outputs of two models, at the batch level. The backward pass expects to receive a tuple of gradients, which are routed through the appropriate model, and summed.

Putting these things together, here's the sort of tagging model that Thinc is designed to make easy.

with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
    model = (
        add_eol_markers('EOL')
        >> flatten
        >> memoize(
            CharLSTM(char_width)
            | (normalize >> str2int >> Embed(word_width)))
        >> ExtractWindow(nW=2)
        >> BatchNorm(ReLu(hidden_width)) ** 3
        >> Softmax()
    )

Not all of these pieces are implemented yet, but hopefully this shows where we're going. The memoize function will be particularly important: in any batch of text, the common words will be very common. It's therefore important to evaluate models such as the CharLSTM once per word type per minibatch, rather than once per token.

3. Callback-based backpropagation

Most neural network libraries use a computational graph abstraction. This takes the execution away from you, so that gradients can be computed automatically. Thinc follows a style more like the autograd library, but with larger operations. Usage is as follows:

def explicit_sgd_update(X, y):
    sgd = lambda weights, gradient: weights - gradient * 0.001
    yh, finish_update = model.begin_update(X, drop=0.2)
    finish_update(y-yh, sgd)

Separating the backpropagation into three parts like this has many advantages. The interface to all models is completely uniform — there is no distinction between the top-level model you use as a predictor and the internal models for the layers. We also make concurrency simple, by making the begin_update() step a pure function, and separating the accumulation of the gradient from the action of the optimizer.

4. Class annotations

To keep the class hierarchy shallow, Thinc uses class decorators to reuse code for layer definitions. Specifically, the following decorators are available:

  • describe.attributes(): Allows attributes to be specified by keyword argument. Used especially for dimensions and parameters.
  • describe.on_init(): Allows callbacks to be specified, which will be called at the end of the __init__.py.
  • describe.on_data(): Allows callbacks to be specified, which will be called on Model.begin_training().

🛠 Changelog

Version Date Description
v7.0.5 2019-07-10 Bug fixes for pickle, threading, unflatten and consistency
v7.0.4 2019-03-19 Don't require thinc_gpu_ops
v7.0.3 2019-03-15 Fix pruning in beam search
v7.0.2 2019-02-23 Fix regression in linear model class
v7.0.1 2019-02-16 Fix import errors
v7.0.0 2019-02-15 Overhaul package dependencies
v6.12.1 2018-11-30 Fix msgpack pin
v6.12.0 2018-10-15 Wheels and separate GPU ops
v6.10.3 2018-07-21 Python 3.7 support and dependency updates
v6.11.2 2018-05-21 Improve GPU installation
v6.11.1 2018-05-20 Support direct linkage to BLAS libraries
v6.11.0 2018-03-16 n/a
v6.10.2 2017-12-06 Efficiency improvements and bug fixes
v6.10.1 2017-11-15 Fix GPU install and minor memory leak
v6.10.0 2017-10-28 CPU efficiency improvements, refactoring
v6.9.0 2017-10-03 Reorganize layers, bug fix to Layer Normalization
v6.8.2 2017-09-26 Fix packaging of gpu_ops
v6.8.1 2017-08-23 Fix Windows support
v6.8.0 2017-07-25 SELU layer, attention, improved GPU/CPU compatibility
v6.7.3 2017-06-05 Fix convolution on GPU
v6.7.2 2017-06-02 Bug fixes to serialization
v6.7.1 2017-06-02 Improve serialization
v6.7.0 2017-06-01 Fixes to serialization, hash embeddings and flatten ops
v6.6.0 2017-05-14 Improved GPU usage and examples
v6.5.2 2017-03-20 n/a
v6.5.1 2017-03-20 Improved linear class and Windows fix
v6.5.0 2017-03-11 Supervised similarity, fancier embedding and improvements to linear model
v6.4.0 2017-02-15 n/a
v6.3.0 2017-01-25 Efficiency improvements, argument checking and error messaging
v6.2.0 2017-01-15 Improve API and introduce overloaded operators
v6.1.3 2017-01-10 More neural network functions and training continuation
v6.1.2 2017-01-09 n/a
v6.1.1 2017-01-09 n/a
v6.1.0 2017-01-09 n/a
v6.0.0 2016-12-31 Add thinc.neural for NLP-oriented deep learning

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-7.0.6.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

thinc-7.0.6-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-7.0.6-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

thinc-7.0.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.0.6-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-7.0.6-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

thinc-7.0.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.0.6-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

thinc-7.0.6-cp35-cp35m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

thinc-7.0.6-cp27-cp27mu-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7mu

thinc-7.0.6-cp27-cp27m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7m

File details

Details for the file thinc-7.0.6.tar.gz.

File metadata

  • Download URL: thinc-7.0.6.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6.tar.gz
Algorithm Hash digest
SHA256 6a2107d9daa60595fbbe8ea8c6ec5bfa930f7a352436ba33be58cff38d39a089
MD5 7663546ca48ec8d038b9b6206b762c7a
BLAKE2b-256 f1fd7137681b13491f8388e9714c6af9579d3efcc2b7e684e965a97f58ca0983

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 79816bcc057191b1c4b45b23e320150d21839a9404b40a76942eb97b04d0b87b
MD5 b26f7fa34e45b051ef2a14e56323396f
BLAKE2b-256 55ac741bc184269b25e10562f611c9111e0bd366ac1d65b71405468d27d843bc

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1792944d380f43817b98b317f87febab46d7ad7adc094a06e1223f9069130214
MD5 7326c5a586b76b3f4700fc31fd3683d3
BLAKE2b-256 513be54038da15eed220f7602db8c7132cf18ca723f7416b65bad10803b69aae

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.0.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8961f70fc3ef9ae725b8c42666f1d43f9faa8a7bc9449c75e2116fa4b2ad1f89
MD5 deabca706a72cd7a44169feaeb34d882
BLAKE2b-256 0e9d09ef51b6c998baf1bbc533f44cc674d006508c796469a956d5f03ef401bc

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 50079331da1752ebe2ee6d037eb4f8833ae054055611ebbd0ecb0860d3537956
MD5 95cf651ca9b6183b50b1630780de10ec
BLAKE2b-256 2ef3e09cd1d8dc5d6c5b4c85d766baf54557a0a068ea2587891ac89275b16b4b

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2034bd257f7ae34e867d7cc7f3006dbd76a0c3daeafb3881f75d2a7973728b1a
MD5 1107415473be6e07850269f47fc8efe9
BLAKE2b-256 7d17018f66ab3b2b410835d65f3e93ee32cf1d0835cbbb931c109f1a5248fda2

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.0.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 60d72e715d26582567b2d94bc4b80ea26dea982c81270d3b018ce5140f8b2c80
MD5 756ff0cf25740825178f86a7cd2da901
BLAKE2b-256 6ad06be98ea8b166194f05e4f0c88cf6c8ad506f7139b3d7a19650de2c586d54

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 54467ea2dd61166ebc928b5a3652a81c9bb6dd77178b64a0481caff454dce0de
MD5 3920a038a634ae12aafadb3bcafa2a02
BLAKE2b-256 6d9d98ecba437e40fd8b5f9b0de212c400cc6e5a9a5a413fe6dabefef98f46c8

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 04c6fe96ea253d0ff1b4135339425197fdec7e248b9a5a4b5333daf27819d4a7
MD5 21394aa38d691f770001aad4741ff4d6
BLAKE2b-256 2ffb9b10d3bd9d6223d343f8a37f11cefcd57960fb2647ba066d41622e9fd6c2

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 baf1967fab08d6e5de01f3599cebe4f7a87e453c73b66a4fa9b38018b680dc05
MD5 838f4f0a6d843a440347e0f5d9dff6e5
BLAKE2b-256 8b6dffba14986965e06caf3f17717feb407022715eb281c9edd4dc9f692ed52a

See more details on using hashes here.

File details

Details for the file thinc-7.0.6-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.0.6-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.0.6-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f6ed608a6e94ed67bfa955f2d248a8798eba4913a7d4c64b9849e2c4b7fad7ce
MD5 7eb7a2cb88d17af890171bc0dcfe9135
BLAKE2b-256 c4e1f1ddcb2a96b50aa07e825b769f7a0d5df0cc8bf35093395d6c738ce0ec44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page