Skip to main content

Practical Machine Learning for NLP

Project description

Thinc: Practical Machine Learning for NLP in Python

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.

Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

🔮 Read the release notes here.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Follow us on Twitter

What's where (as of v7.0.0)

Module Description
thinc.v2v.Model Base class.
thinc.v2v Layers transforming vectors to vectors.
thinc.i2v Layers embedding IDs to vectors.
thinc.t2v Layers pooling tensors to vectors.
thinc.t2t Layers transforming tensors to tensors (e.g. CNN, LSTM).
thinc.api Higher-order functions, for building networks. Will be renamed.
thinc.extra Datasets and utilities.
thinc.neural.ops Container classes for mathematical operations. Will be reorganized.
thinc.linear.avgtron Legacy efficient Averaged Perceptron implementation.

Development status

Thinc's deep learning functionality is still under active development: APIs are unstable, and we're not yet ready to provide usage support. However, if you're already quite familiar with neural networks, there's a lot here you might find interesting. Thinc's conceptual model is quite different from TensorFlow's. Thinc also implements some novel features, such as a small DSL for concisely wiring up models, embedding tables that support pre-computation and the hashing trick, dynamic batch sizes, a concatenation-based approach to variable-length sequences, and support for model averaging for the Adam solver (which performs very well).

No computational graph – just higher order functions

The central problem for a neural network implementation is this: during the forward pass, you compute results that will later be useful during the backward pass. How do you keep track of this arbitrary state, while making sure that layers can be cleanly composed?

Most libraries solve this problem by having you declare the forward computations, which are then compiled into a graph somewhere behind the scenes. Thinc doesn't have a "computational graph". Instead, we just use the stack, because we put the state from the forward pass into callbacks.

All nodes in the network have a simple signature:

f(inputs) -> {outputs, f(d_outputs)->d_inputs}

To make this less abstract, here's a ReLu activation, following this signature:

def relu(inputs):
    mask = inputs > 0
    def backprop_relu(d_outputs, optimizer):
        return d_outputs * mask
    return inputs * mask, backprop_relu

When you call the relu function, you get back an output variable, and a callback. This lets you calculate a gradient using the output, and then pass it into the callback to perform the backward pass.

This signature makes it easy to build a complex network out of smaller pieces, using arbitrary higher-order functions you can write yourself. To make this clearer, we need a function for a weights layer. Usually this will be implemented as a class — but let's continue using closures, to keep things concise, and to keep the simplicity of the interface explicit.

The main complication for the weights layer is that we now have a side-effect to manage: we would like to update the weights. There are a few ways to handle this. In Thinc we currently pass a callable into the backward pass. (I'm not convinced this is best.)

import numpy

def create_linear_layer(n_out, n_in):
    W = numpy.zeros((n_out, n_in))
    b = numpy.zeros((n_out, 1))

    def forward(X):
        Y = W @ X + b
        def backward(dY, optimizer):
            dX = W.T @ dY
            dW = numpy.einsum('ik,jk->ij', dY, X)
            db = dY.sum(axis=0)

            optimizer(W, dW)
            optimizer(b, db)

            return dX
        return Y, backward
    return forward

If we call Wb = create_linear_layer(5, 4), the variable Wb will be the forward() function, implemented inside the body of create_linear_layer(). The Wb instance will have access to the W and b variable defined in its outer scope. If we invoke create_linear_layer() again, we get a new instance, with its own internal state.

The Wb instance and the relu function have exactly the same signature. This makes it easy to write higher order functions to compose them. The most obvious thing to do is chain them together:

def chain(*layers):
    def forward(X):
        backprops = []
        Y = X
        for layer in layers:
            Y, backprop = layer(Y)
            backprops.append(backprop)
        def backward(dY, optimizer):
            for backprop in reversed(backprops):
                dY = backprop(dY, optimizer)
            return dY
        return Y, backward
    return forward

We could now chain our linear layer together with the relu activation, to create a simple feed-forward network:

Wb1 = create_linear_layer(10, 5)
Wb2 = create_linear_layer(3, 10)

model = chain(Wb1, relu, Wb2)

X = numpy.random.uniform(size=(5, 4))

y, bp_y = model(X)

dY = y - truth
dX = bp_y(dY, optimizer)

This conceptual model makes Thinc very flexible. The trade-off is that Thinc is less convenient and efficient at workloads that fit exactly into what TensorFlow etc. are designed for. If your graph really is static, and your inputs are homogenous in size and shape, Keras will likely be faster and simpler. But if you want to pass normal Python objects through your network, or handle sequences and recursions of arbitrary length or complexity, you might find Thinc's design a better fit for your problem.

Quickstart

Thinc should install cleanly with both pip and conda, for Pythons 2.7+ and 3.5+, on Linux, macOS / OSX and Windows. Its only system dependency is a compiler tool-chain (e.g. build-essential) and the Python development headers (e.g. python-dev).

pip install thinc

For GPU support, we're grateful to use the work of Chainer's cupy module, which provides a numpy-compatible interface for GPU arrays. However, installing Chainer when no GPU is available currently causes an error. We therefore do not list Chainer as an explicit dependency — so building Thinc for GPU requires some extra steps:

export CUDA_HOME=/usr/local/cuda-8.0 # Or wherever your CUDA is
export PATH=$PATH:$CUDA_HOME/bin
pip install chainer
python -c "import cupy; assert cupy" # Check it installed
pip install thinc_gpu_ops thinc # Or `thinc[cuda]`
python -c "import thinc_gpu_ops" # Check the GPU ops were built

The rest of this section describes how to build Thinc from source. If you have Fabric installed, you can use the shortcut:

git clone https://github.com/explosion/thinc
cd thinc
fab clean env make test

You can then run the examples as follows:

fab eg.mnist
fab eg.basic_tagger
fab eg.cnn_tagger

Otherwise, you can build and test explicitly with:

git clone https://github.com/explosion/thinc
cd thinc

virtualenv .env
source .env/bin/activate

pip install -r requirements.txt
python setup.py build_ext --inplace
py.test thinc/

And then run the examples as follows:

python examples/mnist.py
python examples/basic_tagger.py
python examples/cnn_tagger.py

Usage

The Neural Network API is still subject to change, even within minor versions. You can get a feel for the current API by checking out the examples. Here are a few quick highlights.

1. Shape inference

Models can be created with some dimensions unspecified. Missing dimensions are inferred when pre-trained weights are loaded or when training begins. This eliminates a common source of programmer error:

# Invalid network — shape mismatch
model = chain(ReLu(512, 748), ReLu(512, 784), Softmax(10))

# Leave the dimensions unspecified, and you can't be wrong.
model = chain(ReLu(512), ReLu(512), Softmax())

2. Operator overloading

The Model.define_operators() classmethod allows you to bind arbitrary binary functions to Python operators, for use in any Model instance. The method can (and should) be used as a context-manager, so that the overloading is limited to the immediate block. This allows concise and expressive model definition:

with Model.define_operators({'>>': chain}):
    model = ReLu(512) >> ReLu(512) >> Softmax()

The overloading is cleaned up at the end of the block. A fairly arbitrary zoo of functions are currently implemented. Some of the most useful:

  • chain(model1, model2): Compose two models f(x) and g(x) into a single model computing g(f(x)).
  • clone(model1, int): Create n copies of a model, each with distinct weights, and chain them together.
  • concatenate(model1, model2): Given two models with output dimensions (n,) and (m,), construct a model with output dimensions (m+n,).
  • add(model1, model2): add(f(x), g(x)) = f(x)+g(x)
  • make_tuple(model1, model2): Construct tuples of the outputs of two models, at the batch level. The backward pass expects to receive a tuple of gradients, which are routed through the appropriate model, and summed.

Putting these things together, here's the sort of tagging model that Thinc is designed to make easy.

with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
    model = (
        add_eol_markers('EOL')
        >> flatten
        >> memoize(
            CharLSTM(char_width)
            | (normalize >> str2int >> Embed(word_width)))
        >> ExtractWindow(nW=2)
        >> BatchNorm(ReLu(hidden_width)) ** 3
        >> Softmax()
    )

Not all of these pieces are implemented yet, but hopefully this shows where we're going. The memoize function will be particularly important: in any batch of text, the common words will be very common. It's therefore important to evaluate models such as the CharLSTM once per word type per minibatch, rather than once per token.

3. Callback-based backpropagation

Most neural network libraries use a computational graph abstraction. This takes the execution away from you, so that gradients can be computed automatically. Thinc follows a style more like the autograd library, but with larger operations. Usage is as follows:

def explicit_sgd_update(X, y):
    sgd = lambda weights, gradient: weights - gradient * 0.001
    yh, finish_update = model.begin_update(X, drop=0.2)
    finish_update(y-yh, sgd)

Separating the backpropagation into three parts like this has many advantages. The interface to all models is completely uniform — there is no distinction between the top-level model you use as a predictor and the internal models for the layers. We also make concurrency simple, by making the begin_update() step a pure function, and separating the accumulation of the gradient from the action of the optimizer.

4. Class annotations

To keep the class hierarchy shallow, Thinc uses class decorators to reuse code for layer definitions. Specifically, the following decorators are available:

  • describe.attributes(): Allows attributes to be specified by keyword argument. Used especially for dimensions and parameters.
  • describe.on_init(): Allows callbacks to be specified, which will be called at the end of the __init__.py.
  • describe.on_data(): Allows callbacks to be specified, which will be called on Model.begin_training().

🛠 Changelog

Version Date Description
v7.0.8 2019-07-11 Fix version for PyPi
v7.0.7 2019-07-11 Avoid allocating a negative shape for ngrams
v7.0.6 2019-07-11 Fix LinearModel regression
v7.0.5 2019-07-10 Bug fixes for pickle, threading, unflatten and consistency
v7.0.4 2019-03-19 Don't require thinc_gpu_ops
v7.0.3 2019-03-15 Fix pruning in beam search
v7.0.2 2019-02-23 Fix regression in linear model class
v7.0.1 2019-02-16 Fix import errors
v7.0.0 2019-02-15 Overhaul package dependencies
v6.12.1 2018-11-30 Fix msgpack pin
v6.12.0 2018-10-15 Wheels and separate GPU ops
v6.10.3 2018-07-21 Python 3.7 support and dependency updates
v6.11.2 2018-05-21 Improve GPU installation
v6.11.1 2018-05-20 Support direct linkage to BLAS libraries
v6.11.0 2018-03-16 n/a
v6.10.2 2017-12-06 Efficiency improvements and bug fixes
v6.10.1 2017-11-15 Fix GPU install and minor memory leak
v6.10.0 2017-10-28 CPU efficiency improvements, refactoring
v6.9.0 2017-10-03 Reorganize layers, bug fix to Layer Normalization
v6.8.2 2017-09-26 Fix packaging of gpu_ops
v6.8.1 2017-08-23 Fix Windows support
v6.8.0 2017-07-25 SELU layer, attention, improved GPU/CPU compatibility
v6.7.3 2017-06-05 Fix convolution on GPU
v6.7.2 2017-06-02 Bug fixes to serialization
v6.7.1 2017-06-02 Improve serialization
v6.7.0 2017-06-01 Fixes to serialization, hash embeddings and flatten ops
v6.6.0 2017-05-14 Improved GPU usage and examples
v6.5.2 2017-03-20 n/a
v6.5.1 2017-03-20 Improved linear class and Windows fix
v6.5.0 2017-03-11 Supervised similarity, fancier embedding and improvements to linear model
v6.4.0 2017-02-15 n/a
v6.3.0 2017-01-25 Efficiency improvements, argument checking and error messaging
v6.2.0 2017-01-15 Improve API and introduce overloaded operators
v6.1.3 2017-01-10 More neural network functions and training continuation
v6.1.2 2017-01-09 n/a
v6.1.1 2017-01-09 n/a
v6.1.0 2017-01-09 n/a
v6.0.0 2016-12-31 Add thinc.neural for NLP-oriented deep learning

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-7.1.0.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

thinc-7.1.0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-7.1.0-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

thinc-7.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.1.0-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-7.1.0-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

thinc-7.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.1.0-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

thinc-7.1.0-cp35-cp35m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

thinc-7.1.0-cp27-cp27mu-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7mu

thinc-7.1.0-cp27-cp27m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7m

thinc-7.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file thinc-7.1.0.tar.gz.

File metadata

  • Download URL: thinc-7.1.0.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0.tar.gz
Algorithm Hash digest
SHA256 4ad73ac4785c1e66ba7e302371ac9292162758cd45f1ffc218499212fe775648
MD5 d399330cbb5687096d4f9db9a80fde4c
BLAKE2b-256 8ec62db6363e1968cc00cffa612c39248e352055adc3afcd869a9513dbf3666f

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1aa4e034a3bc68914f86c15d6bbc1abf40e1071ab01165d80e8a180c948c4340
MD5 f406ba02db6a8b8617aa1c36dbf38277
BLAKE2b-256 171fe6f8081eea2482be0de2042e6f737b3e2a59e5c328a98f9611b53aa215e8

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4b7ee49a85e85e06628f3bfd12b70a4fc7661fac15e388b8b541c27dc06c7ec9
MD5 cdb0900d729b41a456f0e840c39c5267
BLAKE2b-256 b0fbd76137bdb14e02ad4c6847d6aa75fb6a938cac48e5cdcebbe5bc624ab53a

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7949a8dfa9295bfe7f18f83adbb357cde27a5119b70328211fdf8f29863fdbf3
MD5 f4f3a57d0a50e032519a377c0602b333
BLAKE2b-256 8c83cf0794810b5acda3db8f269acd8dcdb1be05a96333792b5e33dc9681ab45

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ee4e4266e0fa1c81c01e74d18ede422b46e8fd5dfc0a2a28b9f057eb5f50e1a2
MD5 4102b1b7925f48f6d7e2c753d1c06cfe
BLAKE2b-256 8186e75cc1357adb373090ed396ca0faba525b7bbc9eb86d4d533dda5bba4828

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f5807a90d982156216841ccd5f1d1b0a115e30e7e1ed78bbdeb22f51761ba78f
MD5 529d66f945e78201c0126460b28ff6f4
BLAKE2b-256 536107320150ba6e8b87606d92ddc43dcbff03826bf674a81ad352f3cc1be5ed

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 18f4d5f2d585f46c1c11dddcf6c983cbee17934d2f2ef0790568dde7c3f7e909
MD5 d95c735b3991c070a0e2239f27fc2a8d
BLAKE2b-256 c2ed39e73d3413fbf25150500d281d37dc13ae68ac68ec90870a1bd6ae25aeea

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c7e25dea5736c2180ddcebbfcf2c75f759fa19ff8f302782d912a455fe4a449a
MD5 6a42860ce2b751609a8fc7dced6d57f3
BLAKE2b-256 3687ff6400076f712df29783ccbf2e575ded824014d2a94cf2d6b08ddee71ce3

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9d07683ec8600b3118c716069cb9a9e5dfbe477716dbd0324fbe77a014142eab
MD5 2b5ce12cd7493446744a8e388dddcca1
BLAKE2b-256 1625cec879a4374cf04845c560425ec67cb7cbe9cfc3558ee5f7f398c236b55f

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e832fd15689d038bf8bb928b802464a962d128a635e37b204a5579fd395c472
MD5 3ccfb027942b59152474c2859b27e618
BLAKE2b-256 508f3f1594c218b682b1e8b8673c8a3f08752ceeb35ca8981fbad340aa6a3874

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 15f2774cf69d7723fd742413c29d5c46273fee698c7b229e22028327fcb518ea
MD5 9d34a21fff79b44858dd7a18db15c2a2
BLAKE2b-256 f8fb2f8cdb7e15023c22c0309e7af3062b60c04c5ae2068508c77fc308f7a73d

See more details on using hashes here.

File details

Details for the file thinc-7.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d70c5e5ec27d06d3ad31be1f0d5439ce1f03f23bf5308f1212c347dcfd7c854e
MD5 af5dd6bcc9077ce1ddc30ca2a91da65b
BLAKE2b-256 7e6a93fd9fbf663a50591639aeaa27ab08f53fc13c0ed501700ed9dde50559fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page