Skip to main content

Practical Machine Learning for NLP

Project description

Thinc: Practical Machine Learning for NLP in Python

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.

Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

🔮 Read the release notes here.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Follow us on Twitter

What's where (as of v7.0.0)

Module Description
thinc.v2v.Model Base class.
thinc.v2v Layers transforming vectors to vectors.
thinc.i2v Layers embedding IDs to vectors.
thinc.t2v Layers pooling tensors to vectors.
thinc.t2t Layers transforming tensors to tensors (e.g. CNN, LSTM).
thinc.api Higher-order functions, for building networks. Will be renamed.
thinc.extra Datasets and utilities.
thinc.neural.ops Container classes for mathematical operations. Will be reorganized.
thinc.linear.avgtron Legacy efficient Averaged Perceptron implementation.

Development status

Thinc's deep learning functionality is still under active development: APIs are unstable, and we're not yet ready to provide usage support. However, if you're already quite familiar with neural networks, there's a lot here you might find interesting. Thinc's conceptual model is quite different from TensorFlow's. Thinc also implements some novel features, such as a small DSL for concisely wiring up models, embedding tables that support pre-computation and the hashing trick, dynamic batch sizes, a concatenation-based approach to variable-length sequences, and support for model averaging for the Adam solver (which performs very well).

No computational graph – just higher order functions

The central problem for a neural network implementation is this: during the forward pass, you compute results that will later be useful during the backward pass. How do you keep track of this arbitrary state, while making sure that layers can be cleanly composed?

Most libraries solve this problem by having you declare the forward computations, which are then compiled into a graph somewhere behind the scenes. Thinc doesn't have a "computational graph". Instead, we just use the stack, because we put the state from the forward pass into callbacks.

All nodes in the network have a simple signature:

f(inputs) -> {outputs, f(d_outputs)->d_inputs}

To make this less abstract, here's a ReLu activation, following this signature:

def relu(inputs):
    mask = inputs > 0
    def backprop_relu(d_outputs, optimizer):
        return d_outputs * mask
    return inputs * mask, backprop_relu

When you call the relu function, you get back an output variable, and a callback. This lets you calculate a gradient using the output, and then pass it into the callback to perform the backward pass.

This signature makes it easy to build a complex network out of smaller pieces, using arbitrary higher-order functions you can write yourself. To make this clearer, we need a function for a weights layer. Usually this will be implemented as a class — but let's continue using closures, to keep things concise, and to keep the simplicity of the interface explicit.

The main complication for the weights layer is that we now have a side-effect to manage: we would like to update the weights. There are a few ways to handle this. In Thinc we currently pass a callable into the backward pass. (I'm not convinced this is best.)

import numpy

def create_linear_layer(n_out, n_in):
    W = numpy.zeros((n_out, n_in))
    b = numpy.zeros((n_out, 1))

    def forward(X):
        Y = W @ X + b
        def backward(dY, optimizer):
            dX = W.T @ dY
            dW = numpy.einsum('ik,jk->ij', dY, X)
            db = dY.sum(axis=0)

            optimizer(W, dW)
            optimizer(b, db)

            return dX
        return Y, backward
    return forward

If we call Wb = create_linear_layer(5, 4), the variable Wb will be the forward() function, implemented inside the body of create_linear_layer(). The Wb instance will have access to the W and b variable defined in its outer scope. If we invoke create_linear_layer() again, we get a new instance, with its own internal state.

The Wb instance and the relu function have exactly the same signature. This makes it easy to write higher order functions to compose them. The most obvious thing to do is chain them together:

def chain(*layers):
    def forward(X):
        backprops = []
        Y = X
        for layer in layers:
            Y, backprop = layer(Y)
            backprops.append(backprop)
        def backward(dY, optimizer):
            for backprop in reversed(backprops):
                dY = backprop(dY, optimizer)
            return dY
        return Y, backward
    return forward

We could now chain our linear layer together with the relu activation, to create a simple feed-forward network:

Wb1 = create_linear_layer(10, 5)
Wb2 = create_linear_layer(3, 10)

model = chain(Wb1, relu, Wb2)

X = numpy.random.uniform(size=(5, 4))

y, bp_y = model(X)

dY = y - truth
dX = bp_y(dY, optimizer)

This conceptual model makes Thinc very flexible. The trade-off is that Thinc is less convenient and efficient at workloads that fit exactly into what TensorFlow etc. are designed for. If your graph really is static, and your inputs are homogenous in size and shape, Keras will likely be faster and simpler. But if you want to pass normal Python objects through your network, or handle sequences and recursions of arbitrary length or complexity, you might find Thinc's design a better fit for your problem.

Quickstart

Thinc should install cleanly with both pip and conda, for Pythons 2.7+ and 3.5+, on Linux, macOS / OSX and Windows. Its only system dependency is a compiler tool-chain (e.g. build-essential) and the Python development headers (e.g. python-dev).

pip install thinc

For GPU support, we're grateful to use the work of Chainer's cupy module, which provides a numpy-compatible interface for GPU arrays. However, installing Chainer when no GPU is available currently causes an error. We therefore do not list Chainer as an explicit dependency — so building Thinc for GPU requires some extra steps:

export CUDA_HOME=/usr/local/cuda-8.0 # Or wherever your CUDA is
export PATH=$PATH:$CUDA_HOME/bin
pip install chainer
python -c "import cupy; assert cupy" # Check it installed
pip install thinc_gpu_ops thinc # Or `thinc[cuda]`
python -c "import thinc_gpu_ops" # Check the GPU ops were built

The rest of this section describes how to build Thinc from source. If you have Fabric installed, you can use the shortcut:

git clone https://github.com/explosion/thinc
cd thinc
fab clean env make test

You can then run the examples as follows:

fab eg.mnist
fab eg.basic_tagger
fab eg.cnn_tagger

Otherwise, you can build and test explicitly with:

git clone https://github.com/explosion/thinc
cd thinc

virtualenv .env
source .env/bin/activate

pip install -r requirements.txt
python setup.py build_ext --inplace
py.test thinc/

And then run the examples as follows:

python examples/mnist.py
python examples/basic_tagger.py
python examples/cnn_tagger.py

Usage

The Neural Network API is still subject to change, even within minor versions. You can get a feel for the current API by checking out the examples. Here are a few quick highlights.

1. Shape inference

Models can be created with some dimensions unspecified. Missing dimensions are inferred when pre-trained weights are loaded or when training begins. This eliminates a common source of programmer error:

# Invalid network — shape mismatch
model = chain(ReLu(512, 748), ReLu(512, 784), Softmax(10))

# Leave the dimensions unspecified, and you can't be wrong.
model = chain(ReLu(512), ReLu(512), Softmax())

2. Operator overloading

The Model.define_operators() classmethod allows you to bind arbitrary binary functions to Python operators, for use in any Model instance. The method can (and should) be used as a context-manager, so that the overloading is limited to the immediate block. This allows concise and expressive model definition:

with Model.define_operators({'>>': chain}):
    model = ReLu(512) >> ReLu(512) >> Softmax()

The overloading is cleaned up at the end of the block. A fairly arbitrary zoo of functions are currently implemented. Some of the most useful:

  • chain(model1, model2): Compose two models f(x) and g(x) into a single model computing g(f(x)).
  • clone(model1, int): Create n copies of a model, each with distinct weights, and chain them together.
  • concatenate(model1, model2): Given two models with output dimensions (n,) and (m,), construct a model with output dimensions (m+n,).
  • add(model1, model2): add(f(x), g(x)) = f(x)+g(x)
  • make_tuple(model1, model2): Construct tuples of the outputs of two models, at the batch level. The backward pass expects to receive a tuple of gradients, which are routed through the appropriate model, and summed.

Putting these things together, here's the sort of tagging model that Thinc is designed to make easy.

with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
    model = (
        add_eol_markers('EOL')
        >> flatten
        >> memoize(
            CharLSTM(char_width)
            | (normalize >> str2int >> Embed(word_width)))
        >> ExtractWindow(nW=2)
        >> BatchNorm(ReLu(hidden_width)) ** 3
        >> Softmax()
    )

Not all of these pieces are implemented yet, but hopefully this shows where we're going. The memoize function will be particularly important: in any batch of text, the common words will be very common. It's therefore important to evaluate models such as the CharLSTM once per word type per minibatch, rather than once per token.

3. Callback-based backpropagation

Most neural network libraries use a computational graph abstraction. This takes the execution away from you, so that gradients can be computed automatically. Thinc follows a style more like the autograd library, but with larger operations. Usage is as follows:

def explicit_sgd_update(X, y):
    sgd = lambda weights, gradient: weights - gradient * 0.001
    yh, finish_update = model.begin_update(X, drop=0.2)
    finish_update(y-yh, sgd)

Separating the backpropagation into three parts like this has many advantages. The interface to all models is completely uniform — there is no distinction between the top-level model you use as a predictor and the internal models for the layers. We also make concurrency simple, by making the begin_update() step a pure function, and separating the accumulation of the gradient from the action of the optimizer.

4. Class annotations

To keep the class hierarchy shallow, Thinc uses class decorators to reuse code for layer definitions. Specifically, the following decorators are available:

  • describe.attributes(): Allows attributes to be specified by keyword argument. Used especially for dimensions and parameters.
  • describe.on_init(): Allows callbacks to be specified, which will be called at the end of the __init__.py.
  • describe.on_data(): Allows callbacks to be specified, which will be called on Model.begin_training().

🛠 Changelog

Version Date Description
v7.0.8 2019-07-11 Fix version for PyPi
v7.0.7 2019-07-11 Avoid allocating a negative shape for ngrams
v7.0.6 2019-07-11 Fix LinearModel regression
v7.0.5 2019-07-10 Bug fixes for pickle, threading, unflatten and consistency
v7.0.4 2019-03-19 Don't require thinc_gpu_ops
v7.0.3 2019-03-15 Fix pruning in beam search
v7.0.2 2019-02-23 Fix regression in linear model class
v7.0.1 2019-02-16 Fix import errors
v7.0.0 2019-02-15 Overhaul package dependencies
v6.12.1 2018-11-30 Fix msgpack pin
v6.12.0 2018-10-15 Wheels and separate GPU ops
v6.10.3 2018-07-21 Python 3.7 support and dependency updates
v6.11.2 2018-05-21 Improve GPU installation
v6.11.1 2018-05-20 Support direct linkage to BLAS libraries
v6.11.0 2018-03-16 n/a
v6.10.2 2017-12-06 Efficiency improvements and bug fixes
v6.10.1 2017-11-15 Fix GPU install and minor memory leak
v6.10.0 2017-10-28 CPU efficiency improvements, refactoring
v6.9.0 2017-10-03 Reorganize layers, bug fix to Layer Normalization
v6.8.2 2017-09-26 Fix packaging of gpu_ops
v6.8.1 2017-08-23 Fix Windows support
v6.8.0 2017-07-25 SELU layer, attention, improved GPU/CPU compatibility
v6.7.3 2017-06-05 Fix convolution on GPU
v6.7.2 2017-06-02 Bug fixes to serialization
v6.7.1 2017-06-02 Improve serialization
v6.7.0 2017-06-01 Fixes to serialization, hash embeddings and flatten ops
v6.6.0 2017-05-14 Improved GPU usage and examples
v6.5.2 2017-03-20 n/a
v6.5.1 2017-03-20 Improved linear class and Windows fix
v6.5.0 2017-03-11 Supervised similarity, fancier embedding and improvements to linear model
v6.4.0 2017-02-15 n/a
v6.3.0 2017-01-25 Efficiency improvements, argument checking and error messaging
v6.2.0 2017-01-15 Improve API and introduce overloaded operators
v6.1.3 2017-01-10 More neural network functions and training continuation
v6.1.2 2017-01-09 n/a
v6.1.1 2017-01-09 n/a
v6.1.0 2017-01-09 n/a
v6.0.0 2016-12-31 Add thinc.neural for NLP-oriented deep learning

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-7.1.1.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

thinc-7.1.1-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-7.1.1-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

thinc-7.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.1.1-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-7.1.1-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

thinc-7.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.1.1-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

thinc-7.1.1-cp35-cp35m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

thinc-7.1.1-cp27-cp27mu-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7mu

thinc-7.1.1-cp27-cp27m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7m

thinc-7.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file thinc-7.1.1.tar.gz.

File metadata

  • Download URL: thinc-7.1.1.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1.tar.gz
Algorithm Hash digest
SHA256 68478efee64a5523d881d47914a92e315bb31bf0a404cec1ff7be83b0a267f3e
MD5 fef68b0187c44bd1cd49a85cbd6364dd
BLAKE2b-256 3813fe9cbdc0a97578d13063352ecc9cc3d1e0dda2e59aa68cc91428b2a1b106

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b518435ddf74d45139935997520d94cc3080d68beda7a111a3183f3aa9417887
MD5 bd17eebd5ebed48c9b9377af93e1425e
BLAKE2b-256 14f4ca5a5e47425ffe196916e0c8c4d59e4391157332b858a2d8b0274347299d

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1ca70d25d96e26f2b968eb0be0fc21c95f77a68111b1a4087f8a07ebfc70c48
MD5 516e2d9c47fac7ff4930b4cd69227997
BLAKE2b-256 f357e72a6ff850a00eab0c6fd83a5d24a24dfb712d0a1c29a428a679a2aadad5

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 87282f7916880feac74a0e2df3f5613afb85623da3e2c7dcfa9f5d90c1697290
MD5 43f0aabf0f469fd870d2d29551bd13ea
BLAKE2b-256 7d10a3200d2ff05098ed7f1fecea8a9503dcdeef7931bc6eae2787ce07454133

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8baf7d81e1a5bbbdda3fb739cacd451c8b977f3c125dc22d284e0c7513d890cb
MD5 efa30954829e9d70b67e1d0da804e66b
BLAKE2b-256 cba8164ff1ae8b04046818f4b664efe29c95c248ae6447a1113b09d8401ecb9d

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82fb5fa6b04501d0c94ac1647ed45dfaa811da9d3562c4e416f9d25d57b80eaa
MD5 80a655a02ddbed53a5341b0292ec5c6d
BLAKE2b-256 4c60cbe7c1ca0d05e9861375fc9fe73f5c6828666bb994e193a80bce554c4004

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a52367f48155ea1986aed895f2998032a16e64c3c6b195ab5d8ad79abe16c73e
MD5 8c6884149e3a14ddd9fb5cfdb3841dca
BLAKE2b-256 09f0dd38ca03d45bdf1dfdf7a9626b42821b86d21c1bccf28265ac17976d55bf

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3c54849156b265b85bffd0c926622278a2247ec48e76cd669442bbd3d3ad4bc6
MD5 f3a85fffaaad42c698a7c0200f58bac5
BLAKE2b-256 22d977ff23a98395434e24f4cdc76393b65ce5f66dca67b7b9ff0981e00954ed

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f5d369e085149c78cc967ae0dee28d37be72449186bed46fe392474f069c4d49
MD5 24aee7076db6c58b3087060d2b470011
BLAKE2b-256 6ee337758580dc43bbfd691791de825c8718dc659788382da0c3570c0d42fc98

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 93f36ff3c26ce72cf24054f06f2632032c220c126e18a48e23f39cc788880b6e
MD5 222e26921e07681cb6353beae02b58e0
BLAKE2b-256 9fe1bb0969cacdc65398a78480f8f8511be037490c5807c22e46758e2bc54e3a

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.1.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.1.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cf2c9f441323627ea1d4da10a674cb4ad27e18f5dce48d46d150504c7a2a96c4
MD5 7e145c04c07bfb06dd352d7810581dd6
BLAKE2b-256 621d3a9c7b4854d60d63e00708e759be2eb8bb7bb63ee295bbd4b1ea4298cdcd

See more details on using hashes here.

File details

Details for the file thinc-7.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 375c55121a16e0af68de2740ecf30267a14b1b5cf538742e1e0d9afa94822234
MD5 2fbfc10df5f30a1836b03f67e48029f9
BLAKE2b-256 0937c87c3653d49232877a6661eba95758a5758cc6176c2532e51cb71713b2c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page