Skip to main content

Practical Machine Learning for NLP

Project description

Thinc: Practical Machine Learning for NLP in Python

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.

Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

🔮 Read the release notes here.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Follow us on Twitter

What's where (as of v7.0.0)

Module Description
thinc.v2v.Model Base class.
thinc.v2v Layers transforming vectors to vectors.
thinc.i2v Layers embedding IDs to vectors.
thinc.t2v Layers pooling tensors to vectors.
thinc.t2t Layers transforming tensors to tensors (e.g. CNN, LSTM).
thinc.api Higher-order functions, for building networks. Will be renamed.
thinc.extra Datasets and utilities.
thinc.neural.ops Container classes for mathematical operations. Will be reorganized.
thinc.linear.avgtron Legacy efficient Averaged Perceptron implementation.

Development status

Thinc's deep learning functionality is still under active development: APIs are unstable, and we're not yet ready to provide usage support. However, if you're already quite familiar with neural networks, there's a lot here you might find interesting. Thinc's conceptual model is quite different from TensorFlow's. Thinc also implements some novel features, such as a small DSL for concisely wiring up models, embedding tables that support pre-computation and the hashing trick, dynamic batch sizes, a concatenation-based approach to variable-length sequences, and support for model averaging for the Adam solver (which performs very well).

No computational graph – just higher order functions

The central problem for a neural network implementation is this: during the forward pass, you compute results that will later be useful during the backward pass. How do you keep track of this arbitrary state, while making sure that layers can be cleanly composed?

Most libraries solve this problem by having you declare the forward computations, which are then compiled into a graph somewhere behind the scenes. Thinc doesn't have a "computational graph". Instead, we just use the stack, because we put the state from the forward pass into callbacks.

All nodes in the network have a simple signature:

f(inputs) -> {outputs, f(d_outputs)->d_inputs}

To make this less abstract, here's a ReLu activation, following this signature:

def relu(inputs):
    mask = inputs > 0
    def backprop_relu(d_outputs, optimizer):
        return d_outputs * mask
    return inputs * mask, backprop_relu

When you call the relu function, you get back an output variable, and a callback. This lets you calculate a gradient using the output, and then pass it into the callback to perform the backward pass.

This signature makes it easy to build a complex network out of smaller pieces, using arbitrary higher-order functions you can write yourself. To make this clearer, we need a function for a weights layer. Usually this will be implemented as a class — but let's continue using closures, to keep things concise, and to keep the simplicity of the interface explicit.

The main complication for the weights layer is that we now have a side-effect to manage: we would like to update the weights. There are a few ways to handle this. In Thinc we currently pass a callable into the backward pass. (I'm not convinced this is best.)

import numpy

def create_linear_layer(n_out, n_in):
    W = numpy.zeros((n_out, n_in))
    b = numpy.zeros((n_out, 1))

    def forward(X):
        Y = W @ X + b
        def backward(dY, optimizer):
            dX = W.T @ dY
            dW = numpy.einsum('ik,jk->ij', dY, X)
            db = dY.sum(axis=0)

            optimizer(W, dW)
            optimizer(b, db)

            return dX
        return Y, backward
    return forward

If we call Wb = create_linear_layer(5, 4), the variable Wb will be the forward() function, implemented inside the body of create_linear_layer(). The Wb instance will have access to the W and b variable defined in its outer scope. If we invoke create_linear_layer() again, we get a new instance, with its own internal state.

The Wb instance and the relu function have exactly the same signature. This makes it easy to write higher order functions to compose them. The most obvious thing to do is chain them together:

def chain(*layers):
    def forward(X):
        backprops = []
        Y = X
        for layer in layers:
            Y, backprop = layer(Y)
            backprops.append(backprop)
        def backward(dY, optimizer):
            for backprop in reversed(backprops):
                dY = backprop(dY, optimizer)
            return dY
        return Y, backward
    return forward

We could now chain our linear layer together with the relu activation, to create a simple feed-forward network:

Wb1 = create_linear_layer(10, 5)
Wb2 = create_linear_layer(3, 10)

model = chain(Wb1, relu, Wb2)

X = numpy.random.uniform(size=(5, 4))

y, bp_y = model(X)

dY = y - truth
dX = bp_y(dY, optimizer)

This conceptual model makes Thinc very flexible. The trade-off is that Thinc is less convenient and efficient at workloads that fit exactly into what TensorFlow etc. are designed for. If your graph really is static, and your inputs are homogenous in size and shape, Keras will likely be faster and simpler. But if you want to pass normal Python objects through your network, or handle sequences and recursions of arbitrary length or complexity, you might find Thinc's design a better fit for your problem.

Quickstart

Thinc should install cleanly with both pip and conda, for Pythons 2.7+ and 3.5+, on Linux, macOS / OSX and Windows. Its only system dependency is a compiler tool-chain (e.g. build-essential) and the Python development headers (e.g. python-dev).

pip install thinc

For GPU support, we're grateful to use the work of Chainer's cupy module, which provides a numpy-compatible interface for GPU arrays. However, installing Chainer when no GPU is available currently causes an error. We therefore do not list Chainer as an explicit dependency — so building Thinc for GPU requires some extra steps:

export CUDA_HOME=/usr/local/cuda-8.0 # Or wherever your CUDA is
export PATH=$PATH:$CUDA_HOME/bin
pip install chainer
python -c "import cupy; assert cupy" # Check it installed
pip install thinc_gpu_ops thinc # Or `thinc[cuda]`
python -c "import thinc_gpu_ops" # Check the GPU ops were built

The rest of this section describes how to build Thinc from source. If you have Fabric installed, you can use the shortcut:

git clone https://github.com/explosion/thinc
cd thinc
fab clean env make test

You can then run the examples as follows:

fab eg.mnist
fab eg.basic_tagger
fab eg.cnn_tagger

Otherwise, you can build and test explicitly with:

git clone https://github.com/explosion/thinc
cd thinc

virtualenv .env
source .env/bin/activate

pip install -r requirements.txt
python setup.py build_ext --inplace
py.test thinc/

And then run the examples as follows:

python examples/mnist.py
python examples/basic_tagger.py
python examples/cnn_tagger.py

Usage

The Neural Network API is still subject to change, even within minor versions. You can get a feel for the current API by checking out the examples. Here are a few quick highlights.

1. Shape inference

Models can be created with some dimensions unspecified. Missing dimensions are inferred when pre-trained weights are loaded or when training begins. This eliminates a common source of programmer error:

# Invalid network — shape mismatch
model = chain(ReLu(512, 748), ReLu(512, 784), Softmax(10))

# Leave the dimensions unspecified, and you can't be wrong.
model = chain(ReLu(512), ReLu(512), Softmax())

2. Operator overloading

The Model.define_operators() classmethod allows you to bind arbitrary binary functions to Python operators, for use in any Model instance. The method can (and should) be used as a context-manager, so that the overloading is limited to the immediate block. This allows concise and expressive model definition:

with Model.define_operators({'>>': chain}):
    model = ReLu(512) >> ReLu(512) >> Softmax()

The overloading is cleaned up at the end of the block. A fairly arbitrary zoo of functions are currently implemented. Some of the most useful:

  • chain(model1, model2): Compose two models f(x) and g(x) into a single model computing g(f(x)).
  • clone(model1, int): Create n copies of a model, each with distinct weights, and chain them together.
  • concatenate(model1, model2): Given two models with output dimensions (n,) and (m,), construct a model with output dimensions (m+n,).
  • add(model1, model2): add(f(x), g(x)) = f(x)+g(x)
  • make_tuple(model1, model2): Construct tuples of the outputs of two models, at the batch level. The backward pass expects to receive a tuple of gradients, which are routed through the appropriate model, and summed.

Putting these things together, here's the sort of tagging model that Thinc is designed to make easy.

with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
    model = (
        add_eol_markers('EOL')
        >> flatten
        >> memoize(
            CharLSTM(char_width)
            | (normalize >> str2int >> Embed(word_width)))
        >> ExtractWindow(nW=2)
        >> BatchNorm(ReLu(hidden_width)) ** 3
        >> Softmax()
    )

Not all of these pieces are implemented yet, but hopefully this shows where we're going. The memoize function will be particularly important: in any batch of text, the common words will be very common. It's therefore important to evaluate models such as the CharLSTM once per word type per minibatch, rather than once per token.

3. Callback-based backpropagation

Most neural network libraries use a computational graph abstraction. This takes the execution away from you, so that gradients can be computed automatically. Thinc follows a style more like the autograd library, but with larger operations. Usage is as follows:

def explicit_sgd_update(X, y):
    sgd = lambda weights, gradient: weights - gradient * 0.001
    yh, finish_update = model.begin_update(X, drop=0.2)
    finish_update(y-yh, sgd)

Separating the backpropagation into three parts like this has many advantages. The interface to all models is completely uniform — there is no distinction between the top-level model you use as a predictor and the internal models for the layers. We also make concurrency simple, by making the begin_update() step a pure function, and separating the accumulation of the gradient from the action of the optimizer.

4. Class annotations

To keep the class hierarchy shallow, Thinc uses class decorators to reuse code for layer definitions. Specifically, the following decorators are available:

  • describe.attributes(): Allows attributes to be specified by keyword argument. Used especially for dimensions and parameters.
  • describe.on_init(): Allows callbacks to be specified, which will be called at the end of the __init__.py.
  • describe.on_data(): Allows callbacks to be specified, which will be called on Model.begin_training().

🛠 Changelog

Version Date Description
v7.1.1 2019-09-10 Support preshed v3.0.0
v7.1.0 2019-08-23 Support other CPUs, read-only arrays
v7.0.8 2019-07-11 Fix version for PyPi
v7.0.7 2019-07-11 Avoid allocating a negative shape for ngrams
v7.0.6 2019-07-11 Fix LinearModel regression
v7.0.5 2019-07-10 Bug fixes for pickle, threading, unflatten and consistency
v7.0.4 2019-03-19 Don't require thinc_gpu_ops
v7.0.3 2019-03-15 Fix pruning in beam search
v7.0.2 2019-02-23 Fix regression in linear model class
v7.0.1 2019-02-16 Fix import errors
v7.0.0 2019-02-15 Overhaul package dependencies
v6.12.1 2018-11-30 Fix msgpack pin
v6.12.0 2018-10-15 Wheels and separate GPU ops
v6.10.3 2018-07-21 Python 3.7 support and dependency updates
v6.11.2 2018-05-21 Improve GPU installation
v6.11.1 2018-05-20 Support direct linkage to BLAS libraries
v6.11.0 2018-03-16 n/a
v6.10.2 2017-12-06 Efficiency improvements and bug fixes
v6.10.1 2017-11-15 Fix GPU install and minor memory leak
v6.10.0 2017-10-28 CPU efficiency improvements, refactoring
v6.9.0 2017-10-03 Reorganize layers, bug fix to Layer Normalization
v6.8.2 2017-09-26 Fix packaging of gpu_ops
v6.8.1 2017-08-23 Fix Windows support
v6.8.0 2017-07-25 SELU layer, attention, improved GPU/CPU compatibility
v6.7.3 2017-06-05 Fix convolution on GPU
v6.7.2 2017-06-02 Bug fixes to serialization
v6.7.1 2017-06-02 Improve serialization
v6.7.0 2017-06-01 Fixes to serialization, hash embeddings and flatten ops
v6.6.0 2017-05-14 Improved GPU usage and examples
v6.5.2 2017-03-20 n/a
v6.5.1 2017-03-20 Improved linear class and Windows fix
v6.5.0 2017-03-11 Supervised similarity, fancier embedding and improvements to linear model
v6.4.0 2017-02-15 n/a
v6.3.0 2017-01-25 Efficiency improvements, argument checking and error messaging
v6.2.0 2017-01-15 Improve API and introduce overloaded operators
v6.1.3 2017-01-10 More neural network functions and training continuation
v6.1.2 2017-01-09 n/a
v6.1.1 2017-01-09 n/a
v6.1.0 2017-01-09 n/a
v6.0.0 2016-12-31 Add thinc.neural for NLP-oriented deep learning

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-7.2.0.tar.gz (1.9 MB view details)

Uploaded Source

Built Distributions

thinc-7.2.0-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-7.2.0-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

thinc-7.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.2.0-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-7.2.0-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

thinc-7.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

thinc-7.2.0-cp35-cp35m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

thinc-7.2.0-cp35-cp35m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

thinc-7.2.0-cp27-cp27mu-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7mu

thinc-7.2.0-cp27-cp27m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 2.7m

thinc-7.2.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file thinc-7.2.0.tar.gz.

File metadata

  • Download URL: thinc-7.2.0.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0.tar.gz
Algorithm Hash digest
SHA256 808caccafab95aa74c21695248b26279792cd7d07d94fd97f181020f318f024a
MD5 a551901b34eb54e600848dde9a58b2af
BLAKE2b-256 e37247a879891ae18b726b317b0cefaa232a78e57a30a189ca68d6f0de55aa53

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9c6e60430b748e4caa85dd215dcb6757f16766a5604e6d7b20661c10393516b4
MD5 aecd2a3d6147e58ffdda34da5e51dd6c
BLAKE2b-256 baebf1578ea0153400dc4c884f676401245bea72e3c1a2e792456d15fd80fbf7

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 422e157eefb0d9d554d158f8d130863ba632c24d432a8f2496056390e03431d2
MD5 b67d40779a1bbf091bcb22b55219e590
BLAKE2b-256 04205e47d41562c422a7716aba442758f0ebb702c2e57e92fd7f1120ef380dc2

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f2abd70eccb9a8fec2503fd00dff4ce439da4611bd0ccf0009a5855fbe06c70d
MD5 e5c98a6738189dc50c4688d043285128
BLAKE2b-256 5dcbb2e823321198166ada937d1441ecd51968d8c65e34d6b3bd4736f78878ff

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 05517d37a9e573e48b09163ddc55d116272becf060669fd19ed9906934b2329b
MD5 28f4fa24ac3e8c3b56f5f0520a8cca4d
BLAKE2b-256 c6b98d297b53ee2b614cbe67b8fe0ea470cf62fb9f84b8076a5bed3b5a81e769

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d31491dd98bcfe515c2b8019b419623decbe80a42f5e9a692d3d34ea3a20d40
MD5 7ebc43194df287a181eeb8fd2c1c1c66
BLAKE2b-256 5ddc840a4b39bfd3c9e6547afff5a3094956979f76fff6e0d07e08e7a01bf6a6

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 17d5bc68c3eee64e776876c3a245c20d3bdbe343cb491674d8d1b0efeaf0e6ba
MD5 cafd90726d7c53d7b30d0f58adbc6ef9
BLAKE2b-256 fff135903f4f48ff8728578b8c0c9916f2baea4ff5ee041af476e818dd4af5e7

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c935db807eb6e94ecbbe5c43ee3f416bc6e13ba5d522388db422e50ce2294dad
MD5 693f748dfa3ace250ac7660fc238da87
BLAKE2b-256 b5460bb66eb422a88386b4d0032bb3e20743806e03ac85e7d7763af81b03a443

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 56df1b644926c74fec78764aad095df73403a95a8aef7176da535dafe76ff072
MD5 f0c19119216fb4763906b09e383fea3a
BLAKE2b-256 83a556d1724b1b7c5590819f6b197643ce07c14fb2620f0080c9ce24e332532a

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b4ad7e29efeeb13159d43151bcd08e180775708aeab1feaac8d810e89d187946
MD5 911fc2e6cee50ed803cc748e3fd8db7c
BLAKE2b-256 31cd44e2a91892555ed863d446b1e3f87c694266b0e46f04034fd40e1693295f

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.2.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for thinc-7.2.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 872f0218a29d199e92730f415f7ecf02d156a7a6b70a739bd1ff249ac2ef1fb5
MD5 c6860289283850029df6c729dadfe7b1
BLAKE2b-256 5846bc755d68fcf20c7f7a5fca0fadede3a4746b3c9a2d1a67e798928ae0239c

See more details on using hashes here.

File details

Details for the file thinc-7.2.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for thinc-7.2.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ef3e6737d9910c13275fe319436541cfc50683f4fa31660adfbd5ce4dac40773
MD5 00ac7def45630db0479a4852ba9ee410
BLAKE2b-256 d0ce06dcc35a9d206ecaccebf375b1fa9a4a0fdba6596fa352e1a9cf6d804db3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page