Skip to main content

Practical Machine Learning for NLP

Project description

Thinc: Practical Machine Learning for NLP in Python

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.

Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

🔮 Read the release notes here.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels

What's where (as of v7.0.0)

Module Description
thinc.v2v.Model Base class.
thinc.v2v Layers transforming vectors to vectors.
thinc.i2v Layers embedding IDs to vectors.
thinc.t2v Layers pooling tensors to vectors.
thinc.t2t Layers transforming tensors to tensors (e.g. CNN, LSTM).
thinc.api Higher-order functions, for building networks. Will be renamed.
thinc.extra Datasets and utilities.
thinc.neural.ops Container classes for mathematical operations. Will be reorganized.
thinc.linear.avgtron Legacy efficient Averaged Perceptron implementation.

Development status

Thinc's deep learning functionality is still under active development: APIs are unstable, and we're not yet ready to provide usage support. However, if you're already quite familiar with neural networks, there's a lot here you might find interesting. Thinc's conceptual model is quite different from TensorFlow's. Thinc also implements some novel features, such as a small DSL for concisely wiring up models, embedding tables that support pre-computation and the hashing trick, dynamic batch sizes, a concatenation-based approach to variable-length sequences, and support for model averaging for the Adam solver (which performs very well).

No computational graph – just higher order functions

The central problem for a neural network implementation is this: during the forward pass, you compute results that will later be useful during the backward pass. How do you keep track of this arbitrary state, while making sure that layers can be cleanly composed?

Most libraries solve this problem by having you declare the forward computations, which are then compiled into a graph somewhere behind the scenes. Thinc doesn't have a "computational graph". Instead, we just use the stack, because we put the state from the forward pass into callbacks.

All nodes in the network have a simple signature:

f(inputs) -> {outputs, f(d_outputs)->d_inputs}

To make this less abstract, here's a ReLu activation, following this signature:

def relu(inputs):
    mask = inputs > 0
    def backprop_relu(d_outputs, optimizer):
        return d_outputs * mask
    return inputs * mask, backprop_relu

When you call the relu function, you get back an output variable, and a callback. This lets you calculate a gradient using the output, and then pass it into the callback to perform the backward pass.

This signature makes it easy to build a complex network out of smaller pieces, using arbitrary higher-order functions you can write yourself. To make this clearer, we need a function for a weights layer. Usually this will be implemented as a class — but let's continue using closures, to keep things concise, and to keep the simplicity of the interface explicit.

The main complication for the weights layer is that we now have a side-effect to manage: we would like to update the weights. There are a few ways to handle this. In Thinc we currently pass a callable into the backward pass. (I'm not convinced this is best.)

import numpy

def create_linear_layer(n_out, n_in):
    W = numpy.zeros((n_out, n_in))
    b = numpy.zeros((n_out, 1))

    def forward(X):
        Y = W @ X + b
        def backward(dY, optimizer):
            dX = W.T @ dY
            dW = numpy.einsum('ik,jk->ij', dY, X)
            db = dY.sum(axis=0)

            optimizer(W, dW)
            optimizer(b, db)

            return dX
        return Y, backward
    return forward

If we call Wb = create_linear_layer(5, 4), the variable Wb will be the forward() function, implemented inside the body of create_linear_layer(). The Wb instance will have access to the W and b variable defined in its outer scope. If we invoke create_linear_layer() again, we get a new instance, with its own internal state.

The Wb instance and the relu function have exactly the same signature. This makes it easy to write higher order functions to compose them. The most obvious thing to do is chain them together:

def chain(*layers):
    def forward(X):
        backprops = []
        Y = X
        for layer in layers:
            Y, backprop = layer(Y)
            backprops.append(backprop)
        def backward(dY, optimizer):
            for backprop in reversed(backprops):
                dY = backprop(dY, optimizer)
            return dY
        return Y, backward
    return forward

We could now chain our linear layer together with the relu activation, to create a simple feed-forward network:

Wb1 = create_linear_layer(10, 5)
Wb2 = create_linear_layer(3, 10)

model = chain(Wb1, relu, Wb2)

X = numpy.random.uniform(size=(5, 4))

y, bp_y = model(X)

dY = y - truth
dX = bp_y(dY, optimizer)

This conceptual model makes Thinc very flexible. The trade-off is that Thinc is less convenient and efficient at workloads that fit exactly into what TensorFlow etc. are designed for. If your graph really is static, and your inputs are homogenous in size and shape, Keras will likely be faster and simpler. But if you want to pass normal Python objects through your network, or handle sequences and recursions of arbitrary length or complexity, you might find Thinc's design a better fit for your problem.

Quickstart

Thinc should install cleanly with both pip and conda, for Pythons 2.7+ and 3.5+, on Linux, macOS / OSX and Windows. Its only system dependency is a compiler tool-chain (e.g. build-essential) and the Python development headers (e.g. python-dev).

pip install thinc

For GPU support, we're grateful to use the work of Chainer's cupy module, which provides a numpy-compatible interface for GPU arrays. However, installing Chainer when no GPU is available currently causes an error. We therefore do not list Chainer as an explicit dependency — so building Thinc for GPU requires some extra steps:

export CUDA_HOME=/usr/local/cuda-8.0 # Or wherever your CUDA is
export PATH=$PATH:$CUDA_HOME/bin
pip install chainer
python -c "import cupy; assert cupy" # Check it installed
pip install thinc_gpu_ops thinc # Or `thinc[cuda]`
python -c "import thinc_gpu_ops" # Check the GPU ops were built

The rest of this section describes how to build Thinc from source. If you have Fabric installed, you can use the shortcut:

git clone https://github.com/explosion/thinc
cd thinc
fab clean env make test

You can then run the examples as follows:

fab eg.mnist
fab eg.basic_tagger
fab eg.cnn_tagger

Otherwise, you can build and test explicitly with:

git clone https://github.com/explosion/thinc
cd thinc

virtualenv .env
source .env/bin/activate

pip install -r requirements.txt
python setup.py build_ext --inplace
py.test thinc/

And then run the examples as follows:

python examples/mnist.py
python examples/basic_tagger.py
python examples/cnn_tagger.py

Usage

The Neural Network API is still subject to change, even within minor versions. You can get a feel for the current API by checking out the examples. Here are a few quick highlights.

1. Shape inference

Models can be created with some dimensions unspecified. Missing dimensions are inferred when pre-trained weights are loaded or when training begins. This eliminates a common source of programmer error:

# Invalid network — shape mismatch
model = chain(ReLu(512, 748), ReLu(512, 784), Softmax(10))

# Leave the dimensions unspecified, and you can't be wrong.
model = chain(ReLu(512), ReLu(512), Softmax())

2. Operator overloading

The Model.define_operators() classmethod allows you to bind arbitrary binary functions to Python operators, for use in any Model instance. The method can (and should) be used as a context-manager, so that the overloading is limited to the immediate block. This allows concise and expressive model definition:

with Model.define_operators({'>>': chain}):
    model = ReLu(512) >> ReLu(512) >> Softmax()

The overloading is cleaned up at the end of the block. A fairly arbitrary zoo of functions are currently implemented. Some of the most useful:

  • chain(model1, model2): Compose two models f(x) and g(x) into a single model computing g(f(x)).
  • clone(model1, int): Create n copies of a model, each with distinct weights, and chain them together.
  • concatenate(model1, model2): Given two models with output dimensions (n,) and (m,), construct a model with output dimensions (m+n,).
  • add(model1, model2): add(f(x), g(x)) = f(x)+g(x)
  • make_tuple(model1, model2): Construct tuples of the outputs of two models, at the batch level. The backward pass expects to receive a tuple of gradients, which are routed through the appropriate model, and summed.

Putting these things together, here's the sort of tagging model that Thinc is designed to make easy.

with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}):
    model = (
        add_eol_markers('EOL')
        >> flatten
        >> memoize(
            CharLSTM(char_width)
            | (normalize >> str2int >> Embed(word_width)))
        >> ExtractWindow(nW=2)
        >> BatchNorm(ReLu(hidden_width)) ** 3
        >> Softmax()
    )

Not all of these pieces are implemented yet, but hopefully this shows where we're going. The memoize function will be particularly important: in any batch of text, the common words will be very common. It's therefore important to evaluate models such as the CharLSTM once per word type per minibatch, rather than once per token.

3. Callback-based backpropagation

Most neural network libraries use a computational graph abstraction. This takes the execution away from you, so that gradients can be computed automatically. Thinc follows a style more like the autograd library, but with larger operations. Usage is as follows:

def explicit_sgd_update(X, y):
    sgd = lambda weights, gradient: weights - gradient * 0.001
    yh, finish_update = model.begin_update(X, drop=0.2)
    finish_update(y-yh, sgd)

Separating the backpropagation into three parts like this has many advantages. The interface to all models is completely uniform — there is no distinction between the top-level model you use as a predictor and the internal models for the layers. We also make concurrency simple, by making the begin_update() step a pure function, and separating the accumulation of the gradient from the action of the optimizer.

4. Class annotations

To keep the class hierarchy shallow, Thinc uses class decorators to reuse code for layer definitions. Specifically, the following decorators are available:

  • describe.attributes(): Allows attributes to be specified by keyword argument. Used especially for dimensions and parameters.
  • describe.on_init(): Allows callbacks to be specified, which will be called at the end of the __init__.py.
  • describe.on_data(): Allows callbacks to be specified, which will be called on Model.begin_training().

🛠 Changelog

Version Date Description
v7.3.1 2019-10-30 Relax dependecy requirements
v7.3.0 2019-10-28 Mish activation and experimental optimizers
v7.2.0 2019-10-20 Simpler GPU install and bug fixes
v7.1.1 2019-09-10 Support preshed v3.0.0
v7.1.0 2019-08-23 Support other CPUs, read-only arrays
v7.0.8 2019-07-11 Fix version for PyPi
v7.0.7 2019-07-11 Avoid allocating a negative shape for ngrams
v7.0.6 2019-07-11 Fix LinearModel regression
v7.0.5 2019-07-10 Bug fixes for pickle, threading, unflatten and consistency
v7.0.4 2019-03-19 Don't require thinc_gpu_ops
v7.0.3 2019-03-15 Fix pruning in beam search
v7.0.2 2019-02-23 Fix regression in linear model class
v7.0.1 2019-02-16 Fix import errors
v7.0.0 2019-02-15 Overhaul package dependencies
v6.12.1 2018-11-30 Fix msgpack pin
v6.12.0 2018-10-15 Wheels and separate GPU ops
v6.10.3 2018-07-21 Python 3.7 support and dependency updates
v6.11.2 2018-05-21 Improve GPU installation
v6.11.1 2018-05-20 Support direct linkage to BLAS libraries
v6.11.0 2018-03-16 n/a
v6.10.2 2017-12-06 Efficiency improvements and bug fixes
v6.10.1 2017-11-15 Fix GPU install and minor memory leak
v6.10.0 2017-10-28 CPU efficiency improvements, refactoring
v6.9.0 2017-10-03 Reorganize layers, bug fix to Layer Normalization
v6.8.2 2017-09-26 Fix packaging of gpu_ops
v6.8.1 2017-08-23 Fix Windows support
v6.8.0 2017-07-25 SELU layer, attention, improved GPU/CPU compatibility
v6.7.3 2017-06-05 Fix convolution on GPU
v6.7.2 2017-06-02 Bug fixes to serialization
v6.7.1 2017-06-02 Improve serialization
v6.7.0 2017-06-01 Fixes to serialization, hash embeddings and flatten ops
v6.6.0 2017-05-14 Improved GPU usage and examples
v6.5.2 2017-03-20 n/a
v6.5.1 2017-03-20 Improved linear class and Windows fix
v6.5.0 2017-03-11 Supervised similarity, fancier embedding and improvements to linear model
v6.4.0 2017-02-15 n/a
v6.3.0 2017-01-25 Efficiency improvements, argument checking and error messaging
v6.2.0 2017-01-15 Improve API and introduce overloaded operators
v6.1.3 2017-01-10 More neural network functions and training continuation
v6.1.2 2017-01-09 n/a
v6.1.1 2017-01-09 n/a
v6.1.0 2017-01-09 n/a
v6.0.0 2016-12-31 Add thinc.neural for NLP-oriented deep learning

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-7.4.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

thinc-7.4.1-cp38-cp38-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-7.4.1-cp38-cp38-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8

thinc-7.4.1-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-7.4.1-cp37-cp37m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-7.4.1-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

thinc-7.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-7.4.1-cp36-cp36m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-7.4.1-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

thinc-7.4.1-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

thinc-7.4.1-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

thinc-7.4.1-cp35-cp35m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

File details

Details for the file thinc-7.4.1.tar.gz.

File metadata

  • Download URL: thinc-7.4.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1.tar.gz
Algorithm Hash digest
SHA256 0139fa84dc9b8d88af15e648fc4ae13d899b8b5e49cb26a8f4a0604ee9ad8a9e
MD5 963d992ed779ff4c2ba70bc8ca094fa2
BLAKE2b-256 175d4343b3a79565af88ba2d53818d97995c3c239288f2565b826865f376d271

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 55b9e02e4b8395cee0a8a810bd8af4d7600b04520bab60df1fc513d50a41eec5
MD5 39082f07cbe20884f01a75810c831935
BLAKE2b-256 a4a0abcf2f382814673e538a2d0ff2186edd975d68b7794df623cd1d2529dcb7

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36237f711f0b3da932bd28cc366a92f6f1b6d1f95ad6cbbc8166b94785b38e40
MD5 8e95dae80069dafafe84c959c6ec77a1
BLAKE2b-256 d7f35f0003393817056f317df05a802611a62b25650dc03b240faf056b862ad6

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d633cc5c210a02ba706ed7e800f4dc906ba1e10b85e3ed40d77fdb7e7674a20
MD5 1abe2a180bf0aec995e4788cf0fbce6f
BLAKE2b-256 934637e9ae69ac13e664bd465fec9e118e7e6dcd30ead25ac6b8957c6422792e

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0df8c5762359a3a4d8d494aa2eff11c4936c4f34559fe1b3ab1d13d24c76b509
MD5 2dc04bf9a824835bb2c3c511fd43a025
BLAKE2b-256 8b6f7cd666630afeb9b85cbd23c75da76b61580e45a9fe1c19145e3f7675ffc8

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d3ff8cfbf583ac788a85f5e0e3cf00edf2f6bc5ba2b2ca264771870c07cb5717
MD5 5f40804c45c4e3fc8707bddb0d9835b0
BLAKE2b-256 1b4e6f16cfebb0dd68cc8a9a973eba8e01ee7b960dc563edb12a3ee397473e32

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d70e71b0561bbf844bc9f737f60150b0f8f04dfd603151869d93a5735deb6219
MD5 8d12f49839241873d22dfc0eac40691a
BLAKE2b-256 f83f9cee434ca42cd7902c1369038daf6c78e06bc101750aa75c6eed1a7bdf03

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 33db4a9182c78c8f4823b1765274bbb0caa8f4269dbd102f2e6ab2f7f91a6084
MD5 ae8ac35138cc0304c4b35d9d71fac02c
BLAKE2b-256 00a80533782f31d3c3a922c84b318e69f5cc321a8f38789025447d073de20016

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2ebeeafd79bb86697388fccc5996d6ea1e69106e2a7fc3a1092d626b522cc01
MD5 0ef06b9d18277311445d6eba71effb6f
BLAKE2b-256 10aeef3ae5e93639c0ef8e3eb32e3c18341e511b3c515fcfc603f4b808087651

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for thinc-7.4.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 061633bf334e3728173d59d6001e8cdef3839166c71e23b3c5f74f5fae3c0d7c
MD5 efdab4db2bfc3fab87108556d7a92b58
BLAKE2b-256 fad6fe7b172669150fe16c0823fa62c3d31fff7fcdbf05093ed1c1bc64587ac0

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.0

File hashes

Hashes for thinc-7.4.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 387d25e57e53eed86d24f2657ab9555703043de27211764835a38e2e31b3c8e9
MD5 9e01904a794f5e15e3d754efe0ba27a6
BLAKE2b-256 c0dc5f4dbca144b64c7c5e254b990c8bedb60a79da01351baa5f4624c987143a

See more details on using hashes here.

File details

Details for the file thinc-7.4.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: thinc-7.4.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.0

File hashes

Hashes for thinc-7.4.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 947806f4cbbcaf8dd046942acd5e52d55ac805303985a2e36de4734be5496bf1
MD5 7a081b95117a8deef91751a6b4777dfb
BLAKE2b-256 3cd3dbf8daf1a5d408144c789ca773922ceb9456d1bb582e467cdfdc36a366d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page