Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy, Prodigy and FastAPI

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

This version

8.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.1.0.tar.gz (199.3 kB view details)

Uploaded Source

Built Distributions

thinc-8.1.0-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (822.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.1.0-cp310-cp310-macosx_11_0_arm64.whl (706.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.1.0-cp310-cp310-macosx_10_9_x86_64.whl (774.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.1.0-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (831.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.1.0-cp39-cp39-macosx_11_0_arm64.whl (709.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.1.0-cp39-cp39-macosx_10_9_x86_64.whl (783.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.1.0-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (835.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.1.0-cp38-cp38-macosx_11_0_arm64.whl (701.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.1.0-cp38-cp38-macosx_10_9_x86_64.whl (768.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.1.0-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (821.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (761.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.1.0-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (825.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

thinc-8.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (762.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file thinc-8.1.0.tar.gz.

File metadata

  • Download URL: thinc-8.1.0.tar.gz
  • Upload date:
  • Size: 199.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0.tar.gz
Algorithm Hash digest
SHA256 eaaea91dc56c041516a829c460423a8aef5357001610c8d6395bce95d8254a0b
MD5 1d7b9dd1da32f52cdc9065a46478acf2
BLAKE2b-256 dbae64e8b911ae039cbfff3b86dc70b6ee7882fd0eb3377ea801e2a066147304

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2c40cbc4c630e6201983af88ee9c4fd9f1d8c1d41545c78a861e9911fcb23b7b
MD5 43069ab1eb65d706816b7f8c93d104c2
BLAKE2b-256 c47232d9c4dd3db4062f1b776eb2ad7f030956b65b8adbef873863d6947230eb

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2766914adae8768aaad0d18c3968779bebe3d366f94ebca3b42b3f8cc290c5e3
MD5 22260cac23ad1ebaf208549278295203
BLAKE2b-256 498818bb7160462cf7a17082fb050b1e5764e457150b506f6970fb57cf5d447f

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dc9a3a108f1730f6cd65a68ae67ea2eb10bd314cffe8dca1afe693c50e84b9b
MD5 4ef8d3b36293e8c5d445d1f75f4055b3
BLAKE2b-256 d939e16084127c7d159de3535b98ecc8639cdd97ba68c46a15de5e6ff7ab6015

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d6738b13d0f7ddaf02f43ce71353fe079d461bf9bec76f48406071de4a89a1dd
MD5 9745b55884f0250b9c70730faae2cea1
BLAKE2b-256 489e940691c5dd8506611c3a936e05b4493ac24800588db664c28a484b916645

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb45c8aabb3d4e646a25939096cc751cb4e0e4ff9d3bfdcce9fa64ff0622d348
MD5 f04f4dbbbc3a4f50dd360720e93a2d70
BLAKE2b-256 24d6585461456c7431c1f0fa69d4f668c7b19855063ca3193ec355a1b1926b91

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6934566d3bca7cd0d2912fbb8966882fd7b43b8ec0139b0c7797814e11555be0
MD5 edab252c1e8b88667abb818f2b9030e2
BLAKE2b-256 b18837cb97a1c1af62a204074c2310d3c1c2c7f84eb806d762bdb1d7a2b71f1b

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8b673775f120d7f54b5f3230742239e21fc5c4e3138372dad87b82617677509
MD5 1146d7e56fd323b1d5d6b6e254865cbb
BLAKE2b-256 be44586535395a7215a2326cd0a0e33e75b95897e1c1a817b167fef0c975e1ee

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9097836ba9a9f631736ab86bb622dcc6155476c7ea0f55486dc2d9b22c07f5d6
MD5 8eeced6aa5c137d1be41c0f64709031e
BLAKE2b-256 c6dfb324360302e2a1d15698f09dc70263c4fbc66e75a401c189e266258318ef

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf9e0ac84a8f473ad723059ac561c307682015a083a8b9b7ff26808780715666
MD5 19e5e23094a14257389567a454161232
BLAKE2b-256 7fef09d2208bc88ceb49c0b7fd8b915fa8b7608c1aadccb1e75ba62d32a04268

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ab8dcf427184d5573494061d4cb7201ae4d7303433f81af359b6bd48b19515f
MD5 270cfda33fdc14fccfddc9e68e619864
BLAKE2b-256 640956389fba07f16975272aaa52d0298ca750da6e046b385d16b015d5ed0e39

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 74fa81f69e67363c4d3b4d60a0608adddadb0f2e2f4cc8c1f2dc2b083747fd69
MD5 ff5e106071ae3dd1b7cd05d4b2b1075b
BLAKE2b-256 1510ea1a870bfdca63bb53e743671d69d86ab42a0cd23282a337c25e924f52fa

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ded7df0174040ccd8be60780f43fd3d18bf675ac1170d82d09985d214896521
MD5 d460ff394a08dc676616e365d933b4e5
BLAKE2b-256 71bb3e323e47f26d926055de0f875e84c43bb5cda49452a5ad72ed0480d2dc4d

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9096bea0f7aa29e52a3a23759cd6cabee98366a41a2c880db949fcf00f936aa4
MD5 fb3114c1281fbfe7c32c69843ee46021
BLAKE2b-256 d04d7a16308735d62f6b9c92796d1f731695bfa5ccf9ccfe728069d491b0d005

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21ec24cdb3248617b41d4bdf13de557fdd994bca73b107c30530b7fcd590c9c2
MD5 00954b7b5751cf2637225f64662c2395
BLAKE2b-256 a3a4e1d7908f06622ce6016658ea7405b2738007e1369bb72543df062faea064

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 133f585941801382dd52201eb5b857426dfa1adca298b052875c9a07943c18b0
MD5 c362504a8de624578475cb7c0646856e
BLAKE2b-256 5ca6549f59271fbb7016d6825d54081a0e9132c60ebc0cb57362e5db6d2cfa69

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7a261b55d72c266d467423966aa48ebf73326736155307c5265a1c99f163f2d7
MD5 b5182d7dba51132d33a7cfbd6725ffa9
BLAKE2b-256 5fdfe11c6059ce3c58fea0e48641c63cede58d6a2b84ca8a3425976564510ed3

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 478f32fcf2042ead1bfbba7a3c77e2fc574c1f65967efc137156130bfd02c056
MD5 d185405d85169229a8c7ce0bdea5e691
BLAKE2b-256 0884163722fd6ad504600ebded34b42b39475328dcf1d2b4f13941c3d74881fd

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b33b2b71ccf6689968a8452e0c1beadf385511df9b55e36d83e688a2832f6b0a
MD5 abc958cb48d66725891f344e08180112
BLAKE2b-256 67f04eee3c367ed63276ab9a0c89def95bdf8958488fad92a09a46eb9875b2b9

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77c7f6984dcaa007bcba8ff67e2e3c7a71a237b63193e5c14fe832493e53976a
MD5 87fafc310c19987cccf3b4d279306caf
BLAKE2b-256 06ee29a36a3077d08440029e136fc8f23411b99661be2b16589f84ad9b46c57d

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c01ca2b364ef7b02c2ffbed0b423597c9999131f83a1878548d36666ca2a27ed
MD5 4f8c910356087a83d5b734ee992d5b0a
BLAKE2b-256 5427ed6c10e5dee4b2313d35368bacdf00b4433eef218083c8ab4eb25b0de32e

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e293ea5141767817c26f085a26fcd3c451c15c1902c5f2a7bdb9a7fe57ebdef
MD5 b98ed7a18c9514a363e91999afded9c4
BLAKE2b-256 d3b27c78c2e285bfdae2d976be436461e3ebb2b7c64347c17e9e5cfadce6dc05

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 619776f6070a00a06713ef14f67e03af5bea16afda1897e7936ba8bbf0b3dba6
MD5 9d859b0ab22c6d58d076bfd4aed6eb3d
BLAKE2b-256 01a285bde180c0c9ea77291555a2916eb3480f61a0d2e998645a36148475a858

See more details on using hashes here.

File details

Details for the file thinc-8.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e22998c2d914bee02dc58aa791bc7df6f9733554b244e94b33ff4a491322c142
MD5 3ddeef34eb86dbf6e0038c1bbc66709b
BLAKE2b-256 1b40233cd80063a752ae49436663349d2e46198fd38bd9ba740dfdf3691127ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page