Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.1.10.tar.gz (190.6 kB view details)

Uploaded Source

Built Distributions

thinc-8.1.10-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (914.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (861.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl (770.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl (850.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.1.10-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (913.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (860.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl (778.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl (859.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.1.10-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (924.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (872.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl (782.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl (867.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.1.10-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (928.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (872.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl (771.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl (850.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.1.10-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (914.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (865.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl (844.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.1.10-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file thinc-8.1.10.tar.gz.

File metadata

  • Download URL: thinc-8.1.10.tar.gz
  • Upload date:
  • Size: 190.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10.tar.gz
Algorithm Hash digest
SHA256 6c4a48d7da07e044e84a68cbb9b22f32f8490995a2bab0bfc60e412d14afb991
MD5 17f4a53129911f2f5422fe53fb3afc27
BLAKE2b-256 fbaadaaff7c5c5878cad416b906bb8b573b5a4023e11a138ad082f1fb089eab8

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 108dcfef6ad1bef46d00ad31edc5fd3ab4d36c0cadb92cfbdb2f92d060acd8a0
MD5 28da8ad31a885a99e069e303d2eeb4f0
BLAKE2b-256 6277f714e95bf30e8f540bcb9bdf0c5e88358b894d45be0333151750590bb94c

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5fd1aa467f445860ae8f0943ab80e41be9b64243522c165bea452ad39d4ff46f
MD5 9404420373e16bfbb3a44bde6f46cac6
BLAKE2b-256 11a5af6e43bf9be5bf1086e5129466273c2582faf81689b3609caad880780a5f

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c9cf2c9d8e44e1edeffe878cb137cbfe5ae1540621b5878be8e5e8d4924d757
MD5 f2ad40074c4196375e9153152b7b1f24
BLAKE2b-256 6b6d925ed638b71d51e68709cf8931cfb2f10cc5bc9d9fafcaa9ac7946cc76f5

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bdf3f4e4a2fc0a4c5887e9114340ddb60ccc7b85f2cf92affdc68da82430575
MD5 a51a37811e484b8f261b13596e1c2e54
BLAKE2b-256 1c2b66e103eefdf1deea66299267aa738c61ee40d8c818c712bcec39af25b57c

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 575b7dbe3a5d773c12f5dd6e366d942ad3c3ef7a5381332ba842bdbaf4d3e820
MD5 b35aedcc02c53fdd53c605fc2d8bff64
BLAKE2b-256 b0c3c3f124964f216e728acb7205f41609f9799177f13380298adf1ecfd7d8f7

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e5b2232e737c25fef3116597d1458fef38ddb7237649747686ce4d4531bb84a3
MD5 732bdb91f0124ad1ebac16d8baa6eb99
BLAKE2b-256 8b68e2fc0f826342380eb990955b1483c3abbcf2651fa9a9501fbbd952f97e2b

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9bee276fb1f820b9a5f80c08655eb78dc2f368f3c22fd33e958e0fedeaac09b
MD5 caf212c30a36170224cb884e2c2a7841
BLAKE2b-256 0d0a7bca8c34b725819d5e4d4eec2e24a696f6ff9282b68f7d24a7a151b1c2bd

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea3da2c0fb9012b6bff8b43d86dc34fd2db463f5b5e5fa725e2f5c49d29620b5
MD5 a5ed520e5e49e80cc5ef61686dac5bd1
BLAKE2b-256 a28a7a5500519eb4c3162612c01a8aa6ce18d729b161835a836b1b385ea9c9f1

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 524e6eb2436084968db1a713cfb5ea99b1b2e3363330d4aac8a403487a16d7c2
MD5 46a7ec122c7483af0e9ce7375a711dce
BLAKE2b-256 8f26a369896061f1436b6015ba4047652e2e7eb99fdf54d705098dbbfdd0dec6

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbd1dc4394352d80af22131e1a238238eded59de19b55f77e6237436f4865b2c
MD5 6d72f88f72f393bad3468fd30448e044
BLAKE2b-256 badd174a128d0e84814b0f05ec5de9ecf65e3a9b3c4882823610736385df21ab

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c245e6a5fcb71fcf23cb329f296349a4925b176fad5713571bb4f0fc8787ad7c
MD5 a8823c750b3e07728c74a7d40e046f9a
BLAKE2b-256 7a00c1458347892353d790387819b4cac7f3014db9a558b58ef68f55fbb0c64d

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d08eb7c15592d4212cd729d782b8be1daa2ed5248a8169991c4f63659bc6266
MD5 600f894750d21fc87f5ca5bd6fcf91a0
BLAKE2b-256 9a888723d77af69ca490a481d72e7eb526e4edf9d06b0f15872698057378a140

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50271826c3737168cd9409620c9fcd3f6315136d2fff08279c213a21a5c438e8
MD5 29c1329e4920807c236d9e04293b24e0
BLAKE2b-256 a41e55884d1e156a5921e161bbaada7d948c9749249852b2a526446f2e788908

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18380a440d617fa704daa5018ed5e7d5a50efd9c237ad536a84047be3bcb767c
MD5 56794436378ab9aebb7a3b739b64a8dc
BLAKE2b-256 6e42057893864c5b981c6b1206701bdd1a38ec5d586e0e77fde5be239348d7a0

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0bf181b47d88c60a961e0cd05eec1143d949dd8e7e3523e13f4e8f1ea32f0004
MD5 4337e08a9fc6e6f5c999ba2236df29fd
BLAKE2b-256 15c45d0a9b7d7627f54d855e31bba56535e664be0131f0b9397e1f7627a01b7e

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 21a41c90122e9b8a6b33d5ba05913fd8a763757a2b49e0243eed0bce7722d661
MD5 82c4d1b6a4f0d3eca6e3b6a76d6d4b3e
BLAKE2b-256 424cdc0535299b86b301c606496fd341c6692136cb8fda93f0a0684abe2f123f

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d31f6834f1b1c428718a9668b7a06b74854a9217ba1d8186b41e48146d487fa3
MD5 373f8eb75adcda1d30092af7df3653f7
BLAKE2b-256 f35c4e8671aa258dbefce508aa0236fae572bf7bbd9784fad3637d76a858ff6f

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b432bf27e4724e2f470e5f36455530906d86a81505a3b406f2f4f5b4644f77d8
MD5 4e7fa0c69344f55098e928d82e3db3ae
BLAKE2b-256 30230ec4a96a5c0c39246233946be12144d651e5d99b0a4dee812b05a5c9f4be

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 715ed60ddf1ddf5f98b454b2495fddbbfdb947d77bd47a241d1981d3f58ac9a0
MD5 e62232b39950325d2cd9ce6e4f898265
BLAKE2b-256 99cdb3418cbba056b01211fc8c4a8718445937fcfcd5b9d8bc350b2a84579bc8

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee75162bfb8aab24bd59604c01935abe1602bbd478064a4a6199d3506cb57679
MD5 823673dc68ab48b3e26fe203dccdcc95
BLAKE2b-256 9177377c6d2b4beb67b653d58dc37737016c68af53ffab32a2eaba49a1a04c85

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d63fa0bd3e60931c76617e993042deef875f57b1679354ac2f0072e621e106d1
MD5 2c996ab97790cc9ac1a52dac475cb9d0
BLAKE2b-256 1fbbad504f0ea3dd158bd9423430fa56d68fa0891947f9dbb4a21296f936990e

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a65a1e824711b30e0c35ebfb833681b64c6cb2762364548a210c3740838b9d91
MD5 35431e6814f740072a76ab6b9188a5b3
BLAKE2b-256 5a62ab663818cb333eae796622503ce0a41cbb5ef49a34559f26171d589032ee

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 042be0f014d896b826d8c0891b7bc8772464a91661938c61cdd7296cef19280d
MD5 379fe99d4f2851460088afb2edfebafa
BLAKE2b-256 77f3c16f1a6aa534fa5c70932b47bf5e87e1e1ea21b9e74f73903a47bc612c02

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd9b678bcbf3f3a21260b2f55a65742aeeb7f5442c3ceb475378d95e0e99dc44
MD5 82fd9d69ab978aba2609f03889fc131e
BLAKE2b-256 d360c82a50fdde18d4544719c88d8e8adc0ba9ea23bb444b03e7296982f93a58

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bc321d0fbb8e146de4c152d36ea6000de0669fe081fd9777c8768ad9b4478839
MD5 a14c0dc9a9296ba3abb18e52008f87b5
BLAKE2b-256 a60bfafa1853bf5db8403a1ff2499b9a6b811b7d4228fc044a1f03345017cf4c

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83da33e05fda126e85e385aaeb2eb8d1ae19368c5bc67f23b88bc2927738b5cf
MD5 6250624802f71fe080020d7701566985
BLAKE2b-256 55258563397bf5216c6afee7cf603694094e8f4b0b151c6645504030363d63be

See more details on using hashes here.

File details

Details for the file thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5af0392bdc63c621ba1def80ec98d753be9a27ebe1cf812bed2760371f20456
MD5 6fe9cc3439ebc9b87b94e0a706ba9049
BLAKE2b-256 05d4e0f3abbccbcf9961fae42d8ec2ed65abdd582aa9589208a59a37fb061a7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page