Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.1.12.tar.gz (190.9 kB view details)

Uploaded Source

Built Distributions

thinc-8.1.12-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (865.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.1.12-cp311-cp311-macosx_11_0_arm64.whl (776.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.1.12-cp311-cp311-macosx_10_9_x86_64.whl (858.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.1.12-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (866.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.1.12-cp310-cp310-macosx_11_0_arm64.whl (784.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.1.12-cp310-cp310-macosx_10_9_x86_64.whl (867.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.1.12-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (935.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (879.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.1.12-cp39-cp39-macosx_11_0_arm64.whl (790.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.1.12-cp39-cp39-macosx_10_9_x86_64.whl (875.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.1.12-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (931.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (875.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.1.12-cp38-cp38-macosx_11_0_arm64.whl (776.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.1.12-cp38-cp38-macosx_10_9_x86_64.whl (857.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.1.12-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (869.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.1.12-cp37-cp37m-macosx_10_9_x86_64.whl (848.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.1.12-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.1.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.1.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (870.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file thinc-8.1.12.tar.gz.

File metadata

  • Download URL: thinc-8.1.12.tar.gz
  • Upload date:
  • Size: 190.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12.tar.gz
Algorithm Hash digest
SHA256 9dd12c5c79b176f077ce9416b49c9752782bd76ff0ea649d66527882e83ea353
MD5 0d495b7a775347528b8249fa325db834
BLAKE2b-256 e5bfef29e2525abfbd4a7515defeb44ec7390841a6497d6477410cc96c5c1b1a

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f9ac43fd02e952c005753f85bd375c03baea5fa818a6a4942930177c31130eca
MD5 8267ba226a6dca6ab41a2f0afc4fbeb9
BLAKE2b-256 ea659fe6fe1ddb5fd34b7b81dada121e6862791e624384a2964331d0228aea38

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dc3117db83ec0d423480b6c77de90f658dfaed5f7a2bbc3d640f1f6c7ff0fe7
MD5 ec1f80837c2088c958fec8c2e86dfe63
BLAKE2b-256 0f077fc2d8e0b0163e8d2b174c3ae72ab7014dc2d68f35bbfb0fed12b84d393c

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15c6cb31138814599426bd8855b9fc9d8d8ddb2bde1c91d204353b5e5af15deb
MD5 1efb61e8b73352ec5cac51ed72496b94
BLAKE2b-256 1c65845721b2bbf509052b245620a8b9a0b7fe8184a71bffb74fcacfce095a7e

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88e8c9cd5119d5dbb0c4ed1bdde5acd6cf12fe1b3316647ecbd79fb12e3ef542
MD5 caed2963ff701b1e7f1ee5484fc164ca
BLAKE2b-256 5087449c067db721ae9d945e3d763656319b3559ff32c82ac9aea5830d56e262

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 340171c1927592082c79509e5a964766e2d65c2e30c5e583489488935a9a2340
MD5 bf291e36efd50940e7b9ab3f706ae289
BLAKE2b-256 606e283056c89581e7d81a0e0866339818d51432edb5fb2c1abe17d36327c730

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b2078018c8bc36540b0c007cb1909f6c81c9a973b3180d15b934414f08988b28
MD5 990adae1d7ae1668000ab8d12b76119d
BLAKE2b-256 c0a96b250ddb2dd4006051332bca3ff1c60562e643a39f6f9b0f71a9806602e1

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c52d0657c61b7e1a382cb5ee1ee71692a0e9c47bef9f3e02ac3492b26056d27
MD5 a0fea68ddf78693a5ecdb72fd148927c
BLAKE2b-256 d7fc2ea1a37a60ad1c7b9f41699ccd29170f6d479d3349e6742503278b4bc811

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fcfe97b80aa02a6cdeef9f5e3127822a13497a9b6f58653da4ff3caf321e3c4
MD5 cede87c9cf945a8a946648f4004cf550
BLAKE2b-256 f7bc60a780504e98c1d1ae24bf14bc1a3c1420986d89586d4a48b0f57db49e48

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01dbe9063171c1d0df29374a3857ee500fb8acf8f33bd8a85d11214d7453ff7a
MD5 1286272de453c1f80e4f349bb1007308
BLAKE2b-256 496ff4eb8d8bd42d3ee12fb79096b44c232e0b85a7c9e3ea1adafd2bb466d4b3

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efda431bc1513e81e457dbff4ef1610592569ddc362f8df24422628b195d51f4
MD5 080f34647ac921a62d54b0797bb39b7b
BLAKE2b-256 f6d501ee4ea402f06d4cf155ba5a1ba57af3abd6d8fb925c72d776f80d1e91b7

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1b846c35a24b5b33e5d240f514f3a9e8bac2b6a10491caa147753dc50740a400
MD5 33b98679b3e681295502b15577730375
BLAKE2b-256 6889532e8b45cd40ba92faf81e1089edfc0181b060dd3027f09681284b774ccd

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47cde897cf54bc731a3a7c2e51a6ef01a86687ab7ae90ab0e9fc5d2294fe0fba
MD5 85794461eb29888e33907b38bbc485f6
BLAKE2b-256 61109d68cbe1ade9a0afc8213e0c8449109a856ab116c47a6811825460d229e9

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d0ac2f6a0b38ddb913f9b31d8c4b13b98a7f5f62db211e0d8ebefbda5138757
MD5 67692edd294b9133f84dcd5a53f11f57
BLAKE2b-256 a9c966ce37f5e33f8adeea78ad5ad141187a3692908316eb9fdc250f8a2f8377

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e078d3b00e51c597f3f301d3e2925d0842d0725f251ff9a53a1e1b4110d4b9c1
MD5 c4005b4ee2f7b6832def2ee1c9fb5229
BLAKE2b-256 4228860f11ba32aa33d93b269fe514204ea854b82cbbe3635eb4c81e68b7bbe5

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2edb3ef3a02f966eae8c5c56feb80ad5b6e5c221c94fcd95eb413d09d0d82212
MD5 69b4c162c4b062386ffdbd20e5cc3cc3
BLAKE2b-256 e09f0b91ac826f5feb8090f32e683c4ecfedc1f5738109cec983ab4140a4d5ba

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0400632aa235cfbbc0004014e90cdf54cd42333aa7f5e971ffe87c8125e607ed
MD5 e3f07d728c5d9089598da6b12773f845
BLAKE2b-256 dcad253d28e0203e50c4361693a43ef40b6022e625ea28792f1e7215ff8e7034

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 285f1141ecd7a9b61e2fed58b609c194b40e6ae5daf1e1e8dec31616bc9ffca1
MD5 44d4233ed4bdc6e187ad09bcf919fa8e
BLAKE2b-256 e281b5b879d6440c3b24787a43ee1f3a69baceaa020611d95e46d704be2c7d57

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8ece3880ac05d6bb75ecdbd9c03298e6f9691e5cb7480c1f15e66e33fe34004
MD5 752b5e030ffb661e0e5969a76cc1d249
BLAKE2b-256 dfc49417575e390e550dc9bdac6750a380d3f9db10ff431819cb6f2d0746cb38

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27231eb1d468e7eb97f255c3d1e985d5a0cb8e309e0ec01b29cce2de836b8db2
MD5 916199c24ca59eef0d3cee53d902e3cb
BLAKE2b-256 3445e4cff9a5488800652dad718db1f08e3aab89506c491879d779d8fc764822

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e10a648872e9ebbe115fa5fba0d515e8226bd0e2de0abd41d55f1ae04017813c
MD5 9c0694711a8b9da77dce559fdcdbdbd1
BLAKE2b-256 00e16cbcf20fc215f1b358d6a04672bec122b26da7293c4686c5329ecdc6f105

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4586d6709f3811db85e192fdf519620b3326d28e5f0193cef8544b057e20a951
MD5 60d56820fe1c0b84b4713b783a825d63
BLAKE2b-256 e687b25162c56b1acead261a6d9b9e153234b5b44e92e82aacb4820dc2ac0c58

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4265f902f9a597be294765479ef6535d679e497fa2fed955cbcabcfdd82f81ad
MD5 dd2e7eda71994e3fd1b2e7ffab063ba1
BLAKE2b-256 afac07cdaadb23c42f72aa9155f77714ad538bbcaaaf75e6c059de71532a299c

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e51c693d477e02eab164a67b588fcdbb3609bc54ec39de6084da2dd9a356b8f8
MD5 569f3799567d19fa9ce536a0435d3fca
BLAKE2b-256 96bff6cec2e36c7c042f983fe2daacd5bce1cfc44745ec5ebb0a5c112f1f5bbd

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6fb12692fae1a056432800f94ec88fa714eb1111aff9eabd61d2dfe10beb713
MD5 b054deefa24fa7cd875fec0aac697083
BLAKE2b-256 ce5f09c4313737e87eb4412f9ab42ccfde20253ad65b3acf5e0a159845c625eb

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.12-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.12-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9388c1427b4c3615967e1be19fa93427be61241392bdd5a84ab1da0f96c6bcfb
MD5 42bcb437fadd4f1237763150be2652c3
BLAKE2b-256 9f277e5a0e85dd033e1b959abec7014a04fd428ab9e5bf92e6168a2b41b6c7ef

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c141e42e610605a9c6def19e5dbb4877353839a610e3cdb1fa68e70f6b39492a
MD5 4b69f0fc4e69b827cffb9ab91e260373
BLAKE2b-256 ba3b264a9d11d4c2522f9a59f2c0de19a7eb1b88057f6aa2ed3c327ab37a9a94

See more details on using hashes here.

File details

Details for the file thinc-8.1.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.12-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4241d0b8c9e813a1fbba05b6dc7d7056c0a2601b8a1119d372e85185068009e6
MD5 7d0d299e0e87814263800d2490808238
BLAKE2b-256 0a40e3e974670eb6c7e1e7aba234dfeb7d312a2579eae6ed5b2c1c314c284876

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page