Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.1.5.tar.gz (182.1 kB view details)

Uploaded Source

Built Distributions

thinc-8.1.5-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (808.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (764.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.1.5-cp311-cp311-macosx_11_0_arm64.whl (684.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.1.5-cp311-cp311-macosx_10_9_x86_64.whl (754.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.1.5-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (761.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.1.5-cp310-cp310-macosx_11_0_arm64.whl (690.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.1.5-cp310-cp310-macosx_10_9_x86_64.whl (761.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.1.5-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (815.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (770.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.1.5-cp39-cp39-macosx_11_0_arm64.whl (694.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.1.5-cp39-cp39-macosx_10_9_x86_64.whl (768.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.1.5-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (819.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (771.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.1.5-cp38-cp38-macosx_11_0_arm64.whl (685.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.1.5-cp38-cp38-macosx_10_9_x86_64.whl (754.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.1.5-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (806.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (764.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.1.5-cp37-cp37m-macosx_10_9_x86_64.whl (748.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.1.5-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (809.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (766.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file thinc-8.1.5.tar.gz.

File metadata

  • Download URL: thinc-8.1.5.tar.gz
  • Upload date:
  • Size: 182.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5.tar.gz
Algorithm Hash digest
SHA256 4d3e4de33d2d0eae7c1455c60c680e453b0204c29e3d2d548d7a9e7fe08ccfbd
MD5 042d4cc44ef7602d86ea3f557bdeecaa
BLAKE2b-256 2690070796bffe61b802647040bc171570e6719b16d249a15b114b67a4fc025d

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 07a4cf13c6f0259f32c9d023e2d32d0f5e0aa12ce0422792dbadd24fa1e0379e
MD5 93fb65e52deaa87463f1c6a06a4e326b
BLAKE2b-256 b355e96447a005f2ce089996f365ba30f59187927d4e37f1c969213ddf1b04f0

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dc59ab558c85f901ac8299eb8ff1be14404b4d47e5ed3f94f897e25496e4f80
MD5 1e071d78e2d1a7b44a092712b8224eb2
BLAKE2b-256 29a451d78c5ce52e3d482a9ad001aba272d8d82968025128a84d5fd3289383fd

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7acccd5fb2fcd6caab1f3ad9d3f6acd1c6194a638dceccb5a33bd6f1875221ab
MD5 1ec4dc775a31aad2f657fd992fa1e0b6
BLAKE2b-256 3482003d471432c7275140466404caf8cf45e792d51190aabd00f33a085dc0e7

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee28aa9773cb69d6c95d0c58b3fa9997c88840ad1eb877576f407a5b3b0f93c0
MD5 4c8c84a0ffca609087ceaeb0b90d83c4
BLAKE2b-256 fde4d0d0f16ca0571ff65d69500f0f002a544e16f9731844d29f8de844ec299a

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 404af2a714d6e688d27f7816042bca85766cbc57808aa9afb3309ad786000726
MD5 4ebc1740d63f6445fc211907b4bbbc6c
BLAKE2b-256 c283b4ce462ec9ff05819a1ec3420ff2f135d3dd6239debadf3faa09d8b302c5

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a683f5280601f2fa1625e738e2b6ce481d17b07350823164f5863aab6b8b8a5d
MD5 b866b071fe471349ad59ef786e142958
BLAKE2b-256 8163f6125cfca00f78e5948d9412ed0ac861041aaaac769999b060ca2c3b00e2

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25fcf9b53317f3addca048f1295d4708a95c526821295fe42398e23520514373
MD5 9ad380ba217288e34bedb20c1342afce
BLAKE2b-256 e959e10b4a88d7c5c65c843bba6a85794bdcb59f9b3abf53ed86efe7e52f9373

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d66eeacc29769bf4238a0666f05e38d75dce60ab609eea5089975e6d8b82721
MD5 9933e4cc6eb159a51f34a8efbb2d7f30
BLAKE2b-256 66a11ac9b7e531f501be48b73d327ffd2ea92d5c71145612b81617e7f52b8778

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8af5639de41a08d358fac073ac116faefe75289d9bed5c1fbf6c7a54724529ea
MD5 340a53d66484fd3c9fd48600b1cab718
BLAKE2b-256 1d24d25dbc33a6d8b4acbe86463addaaa2a1091fb3296aed95c8e46e2aee6408

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5dc6629e4770a13dec34eda3c4d89302f1b5c91ac4663cd53f876a4e761fcc00
MD5 4942076a5a32fdc24b48664785ae81a0
BLAKE2b-256 022135249892f087f2c99eb3b10fd500639f6b983ae1cf86fbb26f324a6dcf2a

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 16be051c6f71d967fe87c3bda3a760699539cf75fee6b32527ea38feb3002e56
MD5 b3ba2c5525a5b8344b00a5817ae43be1
BLAKE2b-256 1aaf3b2073a1598a62f9ca883b844a350a00ea86e709160d1313bcf123c8cb90

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bb376234c44f173445651c9bf397d05622e31c09a98f81cee98f5908d674380
MD5 548e0e301cabb0e830cc8064a721bcbd
BLAKE2b-256 69d26344041c5e29f45f9e4e26cfd734b936a0378e26759b3301d3e8bd30345d

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ced446d2af306a29b0c9ba8940a6631e2e9ef287f9643f4a1d539d69e9fc7266
MD5 cd80be2d359172c200fc43cb0fdc5d79
BLAKE2b-256 9c4221ca9195d0133be8fc2fe44f9e64c9408c9e084b2f5f4216bbb500c2e812

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d0144cccb3fb08b15bba73a97f83c0f311a388417fb89d5bb4451abe559b0a2
MD5 c71a8960a30e1fc8cf57c5249f3e1d4e
BLAKE2b-256 249a0c3c8023b3290848c55f5f7a10c6ff2623e315ebbf68c41e6d3629645aaf

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad96acada56e4a0509b834c2e0950a5066727ddfc8d2201b83f7bca8751886aa
MD5 062e8475ada12421582f6682e911586c
BLAKE2b-256 1a478173d5aae8d5b28d0bc2dc64ab177458fcda05a844b9a9ff4d2b8691d074

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b7c1b8417e6bebcebe0bbded816b7b6587a1e239539109897e15cf8463dbed10
MD5 fcb0df6c6bcf92259986070183980157
BLAKE2b-256 42b0e638f5ee7bebf19ad75133ed69cc38f122cb6498440022e8a76204042958

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa07750e65cc7d3bd922bf2046a10ef28cf22497990da13c3ca154b25449b758
MD5 6c3788176a9ad2ee910012b70af9deb4
BLAKE2b-256 425617ce58fe01233598cb12f9cf0efa1ae777928eae2eabf14cf11e85550a02

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6793340b5ada30f11d9beaa6001ade6d80cf3a7877d701ec1710552145dabb33
MD5 ca82ddbd8c770409930a92733568c927
BLAKE2b-256 a5173ddbb60a501a53f1d0cfa3de7208043070eb7dd231d97938004b77a01f31

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 345d15eb45743b305a35dd1dc77d282248e55e45a0a84c38d2dfc9fad6130125
MD5 4bc52b4d463c61e82e0bff21b3aad558
BLAKE2b-256 04f18622821a9cde73479bd1ef8ae93e71d6af63fa6b03329c29043f580ddb37

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b62a4247cce4c3a07014b9386b9045dbc15a83aa46102a7fcd5d8eec21fa463a
MD5 a30ab14bf7353cd1558586abfb8510b7
BLAKE2b-256 9daddcc044c39a51d1b68fa89959e21f7b6639185e78fc52f6b917028d4e48ac

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 61dfa235c891c1fa24f9607cd0cad264806adeb70d267162c6e5d91fb9f78640
MD5 feffd759901a3bb7fecb6258b78abc7e
BLAKE2b-256 3b424722fa656b06703dbacd5e0ae1d8f24931658acd95dc09828560c9033cc1

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d202e79e3d785a2931d580d3dafaa6ca357c5656c82341121731a3491a1c8887
MD5 0e6e71439d90bdfffc785b1c97c1309f
BLAKE2b-256 f89c34644a663d7f6e5ef690320bd044962cc8e9894a45a32e61fcda98676e4e

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea5e6502565fe72f9a975f6fe5d1be9d19914d2a3abb3158da08b4adffaa97c6
MD5 aa0f4d9194b915e76a28ff7e279f9509
BLAKE2b-256 af826034593f5a3e1eec5b017f981b542d307cf54495c36630e92335ad5f1512

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73538c0e596d1f281678354f6508d4af5fad3ae0743b069a96628f2a96085fa5
MD5 2e9a4748f075ba157da36bc69bd218a9
BLAKE2b-256 4badb7e53deaff04aa318f9fa1dcfd54ca7ed2410fc832dbe10d305b19778508

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for thinc-8.1.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 91a8ef8dd565b6aa9b3161b97eece079993109be156f4e8501c8bd36e02b6f3f
MD5 d39ef924cf0058fc944c2725c8fffc20
BLAKE2b-256 9cc3144ad7c9e9144d69b33d40f1fb703c261720373be021ccd1e9c079cc99af

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 076d68f6c27862b66e15af3622651c58f66b3d3b1c69beadbf1c13da294f05cc
MD5 57a5320ad53327a5a72a29c9f92c8e59
BLAKE2b-256 026cf3b50fa880b4a46761852a4d0b22334a92749f1bc566bb3e14c48afdb9d1

See more details on using hashes here.

File details

Details for the file thinc-8.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ad722c4b1351a712bf8759307ea1213f236aee4a170b2ff31f7908f31b34261
MD5 04332006e52cdc74e7055b8e1611cf34
BLAKE2b-256 ccbb2941519679cd0393a6f662cc1425924c64f891e0e8c7d58665416f748ed2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page