Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

Azure Pipelines Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.1.6.tar.gz (186.0 kB view details)

Uploaded Source

Built Distributions

thinc-8.1.6-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (772.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.1.6-cp311-cp311-macosx_11_0_arm64.whl (691.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.1.6-cp311-cp311-macosx_10_9_x86_64.whl (762.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.1.6-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (814.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (768.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.1.6-cp310-cp310-macosx_11_0_arm64.whl (698.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.1.6-cp310-cp310-macosx_10_9_x86_64.whl (769.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.1.6-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (823.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (778.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.1.6-cp39-cp39-macosx_11_0_arm64.whl (701.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.1.6-cp39-cp39-macosx_10_9_x86_64.whl (776.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.1.6-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (827.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (778.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.1.6-cp38-cp38-macosx_11_0_arm64.whl (692.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.1.6-cp38-cp38-macosx_10_9_x86_64.whl (761.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.1.6-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (814.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (771.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.1.6-cp37-cp37m-macosx_10_9_x86_64.whl (755.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.1.6-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.1.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (817.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.1.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (774.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file thinc-8.1.6.tar.gz.

File metadata

  • Download URL: thinc-8.1.6.tar.gz
  • Upload date:
  • Size: 186.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6.tar.gz
Algorithm Hash digest
SHA256 9241c37761f004fe684e637d2b4d8b79addebabc64e343aa1cba144fad2c9b47
MD5 cbcc764366450a192fe85af6cd5e432f
BLAKE2b-256 e39ed9116e3922483096b4a7dfde4344d239f3d4f96f7d2658d44dcd144d8b43

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8061678c1747dd307d585b60b7be8cfd2c1d56cd20312e160226ae75639136c0
MD5 d3deb78e299310a9b1fe713931f7ed78
BLAKE2b-256 633f8b0c91431a64812d9e488dd0b49e3a084925d3475963dc73605c0cc1d505

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35cf8ce97ab10f2cd99bacc5e2d925ac1072d551d5ce0c24f67503cd09811a25
MD5 9abd65ef738def488717bd14eacadf3a
BLAKE2b-256 6c08997084c53905c021b60c734d6bef9e496b8ffaa26fbaf619ea71098c1590

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ee47c618f54b729f6a60fe7bd1961a9a78dd34dd81f6a99ebe8835cb498e557
MD5 f21a241dc9d666f46ea24bdb131c3e72
BLAKE2b-256 0453aa1c021697cac8429dc20ca008f0c136dab0e47895bd3ee16cd3836109d3

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f3348c052e031ec701c8b36b9cc285eab061d8f2c335a0056a30e58c891583d
MD5 e66c637508e050404f0bc7634cfedc0e
BLAKE2b-256 0fa4274a639b4bac383965f3afc54c8dbce17c96e552345a47c715e7ae705af9

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 150a6e6b7fd7bebc9e2caab481d1d3accab8b649702820d577813e3db8681c0b
MD5 c79392a03997f9908b5e8b78d6fd49ab
BLAKE2b-256 99fe1568fe6367e062aed2fb16625edcd3d8038a54993913df30fe18a930a222

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b53deac89ad1021a3fcac36b674c7809df769a5b3dcd1e14eab2fe0f3c68ab2
MD5 74a6d637ef04213e057ccdfc5774825d
BLAKE2b-256 5360fd71c8ff0a6c55c9868273533dd014c6879651e84db3e680d33e6ac1cd9b

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0cee9aea2c22c297411e02ad4b058c40e3e4d6f4ad076c1667000f8f4a6a81e
MD5 8ac09c5aadc6f4cbf9f5f1860209226d
BLAKE2b-256 5916e420fbd034fedc9ffc2457507c52fbd0101f21648ee89cd5c9fb5f78d5ff

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7e06adaae2f48992b942ca72b4e4278e75ee9d582b691e151271bdee6ca013c
MD5 0729b5c7980d76a495683a84b8a2b74c
BLAKE2b-256 9781a5bf84ae6fae30e3b633bd2ff69647ce20a67d324d4c059d239e5d07842f

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ffeac5cf7d45ff1951dc34a9b6ee81a5c0bc6f96c3a477ab895dc68b35fdca13
MD5 f35c9ae02baf856de232375ffd99fb23
BLAKE2b-256 c0264fd0deaf652fab61da15bdfc0d92b2c070c71759288d65c21d73f3cb8394

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a699c6d6550df4f5f6afafe3bfb0616e66f1780ab59c1aef3035e73b4da13c32
MD5 ca9f2fd8ad0e2e03dd630358c75d3c75
BLAKE2b-256 4d095372fa0d318f79a0b2e84b714a2674237e21a4c9e3d78e41131febf123c7

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3693c5eeaeace5ed178070f62ca7eb8e453f269d5c83abf8b44d16e85d1433a4
MD5 c942d4836e55435f020d567e5edea28e
BLAKE2b-256 af1894625a82e26f3959f9aa33c158e4a26e13a44ec90b775d164e66604ff389

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13db03222d595f6b00091a3c8b303f11a9a82cfa529af614127bbd940c0d9de5
MD5 398a5e1de25bb04489be942c6f80443b
BLAKE2b-256 55293a5e1fd6a6934c01497754f441e66856ac16c5d2e09419c58e2b6d046d17

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8eb07322ae636bcba6f90df203c00ba428437de88d700b195236fad830551cd5
MD5 01c087a2ee1d525d37844498bad36c95
BLAKE2b-256 4660181d8eefcb0b2406b80018855c92617e5d710b67e2129a3ce986601581d9

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b22381917e533c422285c989a9e798ca953f963476238ad988cb63732c413930
MD5 b1b094b9177c1a413fccc2e6cda0122c
BLAKE2b-256 2fb9638bd9e087a58002109585236a88ee8641e46c67f7178b0440d2e4263cef

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 540b63b74a56e565c863bf8f4e551798873fa21668d50693eb10e11de51d8530
MD5 62ad63c7d661c0c487655a6cf679eb98
BLAKE2b-256 752846810d3a84db39fb076853ec883d12f091cba7739bff85874bb02304ffaf

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dfa86f2d7f97eefa8b457a8bc857b9c3eb33c2c628710ae9ec4fe139b350db45
MD5 1bebcb1449e9bd5fa90e72235da68d4b
BLAKE2b-256 7376ab02468883a854c9b5d66b60b093a712d37b43910540a22487d189e69bb7

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b952a6430a4e4c6f4ddc757a49612f00d207174cad16f0e3e9ab82980a4960b5
MD5 49e4729620a719ffc3264fe7bf3f73ce
BLAKE2b-256 9d4dc8c174558546161405b46ac0f70c47dde55ef418af8d98cba38942dcd305

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebab1f7618d2bf6a616ea56f2d745193307f0f3f5373c3a589ee761731bf4907
MD5 bde3f34a1d7e0631fb350c7dfdc21cca
BLAKE2b-256 998ad33f36a48a7f6598f6a1d2db0a6286fea60263a9a78f36dcc36001eaa17a

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f0c2842dc85c6d4e0784ea9471bfdd55c800e8269662bbf3e6ea27a5af376a6
MD5 b251df6bb5ef77f5072ff7f55fdb0be1
BLAKE2b-256 cf1256f3dbd692fea57ae51657d3598e79a082ed3bcfeb352549436836479eb2

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6e8d59e720c1e75b1ce29be5460372f26211327e827328e8afbbe15a30f3e0f
MD5 171c0a2cd7b13b4584dd4be21b0be9cc
BLAKE2b-256 569f8ca05fc3f7a520acdc262fdd624a7825948defe2867915aec4fd5f927d33

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ebb41c1a47e72d31c9635c955a69d827cde7aadfa7369c56bba512a7d11c0c45
MD5 8fd978387914aa5546950ba709ac7e7c
BLAKE2b-256 da3d4a9f42ac507b8b88bb126f2c1710877926998cb01f56de60a464b9b9572b

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75e6139fb3f00bbc340fbf1e7ac7dcbfac8552249df34cb7807d864eebd0fa08
MD5 8340f4388dc3cfd36c94b67aafd600d0
BLAKE2b-256 9fdb6dcf1c495f4c000679fce85b93b6fad032759bb04d198d4ea5394c5479f6

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1c685e3edf0d174dc22e947db4ea9bc0034e2fc5a73fb317731c90b2b2f28d1
MD5 dd58758b46b90b42bc7a14599ce89b21
BLAKE2b-256 8123ecffe0eeeada027c26245029dde09c13f8e11a3763e477cf907bb6c81599

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0baca8b752992595a664f299d9e3146ecedeb101e468260e4eb156f3d60611dd
MD5 192441610d919ad23f90be1e934103df
BLAKE2b-256 2314210f39e4e0bd0f0fa613f4cb8fde1464f5c8d2fca3484b14d31448d8030c

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.1.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.1.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4a92c6dca06e91960bd684d61c8eeed0d48c676ba1f8bad52f7b9ba26faa9ff3
MD5 8def310e304050b8be9db9bb947aa716
BLAKE2b-256 8408bb2f2a31f890b183f562e86ecf1dfd11004cd9cd54b14630307425b632c2

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 740480d39321f9ab923576496ef4e7690a48bebc17cdb466041012d6a86d84b7
MD5 451a7e6be0f025e44a96a7590c2e0aa3
BLAKE2b-256 45d2b4d0efbec1cb62b1a7d493ed78bf032c71bc38b859605ec84c47f7bb948a

See more details on using hashes here.

File details

Details for the file thinc-8.1.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.1.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef70037c4ac5322dbf21eebe44b02eefdff6b651cc85d6a0b9ee0ca9a742e6fb
MD5 5bfd3a8d2056b6e9cc93a64b9350af36
BLAKE2b-256 91bc2c24548cb5bdcca7b40365809dee8177ee62e115bf73ec08bf4c59c8762c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page