Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.2.0.tar.gz (191.5 kB view details)

Uploaded Source

Built Distributions

thinc-8.2.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (866.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.2.0-cp311-cp311-macosx_11_0_arm64.whl (777.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.2.0-cp311-cp311-macosx_10_9_x86_64.whl (859.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.2.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (866.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.2.0-cp310-cp310-macosx_11_0_arm64.whl (785.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.2.0-cp310-cp310-macosx_10_9_x86_64.whl (868.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.2.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (935.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (880.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.2.0-cp39-cp39-macosx_11_0_arm64.whl (791.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.2.0-cp39-cp39-macosx_10_9_x86_64.whl (876.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.2.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (932.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (876.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.2.0-cp38-cp38-macosx_11_0_arm64.whl (777.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.2.0-cp38-cp38-macosx_10_9_x86_64.whl (858.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.2.0-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (870.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (849.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.2.0-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (871.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file thinc-8.2.0.tar.gz.

File metadata

  • Download URL: thinc-8.2.0.tar.gz
  • Upload date:
  • Size: 191.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0.tar.gz
Algorithm Hash digest
SHA256 82ca1e7831e354d74c6776ed87dbd73f4aad59ed258c8746cbe868688186fc49
MD5 0706b0690e293f064dd74c39e23de50a
BLAKE2b-256 f26873009f29388fce841b8f5a113532fb7a52d3770d820eee17942dc3e084fc

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 67cf551e6fe694fafeb8503ee4ef256acbf6dbdfd720823fdcb867ad68842dc0
MD5 bae5f50bfa7202b824c4f335690e3349
BLAKE2b-256 687c9c82ff49aed415dfa9a14bb26691e802b97975fe230a7ff44545c31acb8f

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6107bb6b32091a8884c86c0c15b46c0a510698397dc04b73ca69ff7211ffbe5b
MD5 b3b58aae7860a0b0153b470a8bc26228
BLAKE2b-256 a1f7cf6a10415002e42487dd686b9dcb60b12bcd93e835f44c7fb080f845182c

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f13fe2c19e0e40e6b6e901e52d3a1f3e37c697742130ecd5d856cb04171cbf1
MD5 4ce76496f01f61cf47a368155ce6ae80
BLAKE2b-256 50183bb00ebb360e076ff5acf06ba1c30980dd21c0588b16b7cfee9f9c7e05c6

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b104840b2d28dd2e96922b42e2dbc885374962041a72aa45d90cc0f69231032
MD5 ed1f92f7083d72634f2ab30fe56edae6
BLAKE2b-256 100b3dd6630773fdd96581c2bff5317f26f808825bbf9d70cfb1d1d48ff89c64

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee26d41232dd569d03abb4eb31c6fc2907d3666d293a19462ec493b33b2bffbc
MD5 09d2043ad9787429cf359a42b9ffc269
BLAKE2b-256 afa1eb16fc9e642a5258784feddf8db5b714005cca9f2cc949902fe24bba93ed

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 56103901b0ddc2316af7eb810b525b43853e5dc6dbb50037fe693b93ccd2f609
MD5 cac1974e8f299bd0a86711eac01b8c55
BLAKE2b-256 9fdbafb9fed3c05ccdc7e614fc3bd7840a45e08af1e94d4a16fe4f84d4b036d0

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb2b95756bfcf66b8940a3015507ae89749624dc0dbd0bbf8324a840b19e2835
MD5 0996cfd21f732d1b3fb6ee09595324ef
BLAKE2b-256 99fafe6d5ed905e7580191fa6340066acbacd71fb1fc551dd797228af28553e8

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15257ad85f57205264293c5f20d95e441361414b430d69940f2755e4232ea2ff
MD5 bee4f2ca0d6ab2b3f6b1732db2343b68
BLAKE2b-256 9010b9081802c1b27fecc825ae52076fed1d66952d20b37591ad023bc6a11777

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa7e7d2252bd24b13432b9c1972f0e18e5ae4868c65a1cef02f25d1bf125c9e6
MD5 9fbb12b0337521a36faaa013a81967c8
BLAKE2b-256 c4cc3d5180da25208c7dced0f9f4b8983536dc04c869679123372fda4bf023b8

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00a7b60d522bcd05f79bed07312cbaecce4de0dbf6db6ba57b23e8f00e8e6438
MD5 c144e7050b2d4baa2ce77e276af2aaaf
BLAKE2b-256 8810cfd2effd2cb49c8b5dc4a51b9bdd65b862925cff5b3c05af378558842632

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 49ed3b4cc8a04d8054a60c7078ccb9623fd76107980bfa38bd9631903d774367
MD5 44ece1616f4c3609075bcf97a4cc4e70
BLAKE2b-256 b94005b3cc1973b252c9e95cc6e582985ac04b348027c335a8182ce56521d9ad

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ffc18cd755517ae748a875d803b262b480161cd8bef329894033cab49e19d64
MD5 7894d72c71eef4f3dcbe587959427c9f
BLAKE2b-256 7835e7c0e3ccc0e6bcb45a14e2ac03d815a45a2719f444edac3f12016c7f0509

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7394bb954c0be5816c1a31f2c90f96fd92e248a2a35fdb7549f304f77d8ed798
MD5 30d9aab95808d1035e55125c4796687d
BLAKE2b-256 a86d7efdcd2b226ee09ab8a5960d3f99f86c27b68939879b63e647ee5933055b

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 696b27d2cf3289364cc19cb5cc006a5dd98eed29069c9d9284b02852f226b56a
MD5 a84c02868609c50eb501da6cbc5eb9ad
BLAKE2b-256 68cf66a9d1506d32bf44dc4eec5be96be779fb9dd1c2692616d06d9955fb23f3

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc3c6167d38ea3e857adf04e955dba981c973ca8801b861625cd94c4e9b0c452
MD5 e8aa9b5cdf1af443ef014a462cafccf8
BLAKE2b-256 2c0f6bdef9f6629e510fdc07485aff751ce144b92873bb17bfd74abc5d6881d8

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ecfc90be9d359d3fb5114f92d61558d641b23bf56dc1e6443ffa647d0003d529
MD5 e444514e28763d07cbb9552d38b2fc44
BLAKE2b-256 cbc08020a5d638e9c45277d4d5de9e3ba8cd3b12b7ce050f4a2e6929cdf57d0a

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2661ebb0cc0e091ad4c259f7e9933851faf8d8bff8cd67f06607a19817d35a1b
MD5 88f450a3a00fba070c6b9bae3143184d
BLAKE2b-256 c434d1814b9ba5a761cdcca6b2aad213ac522b136bf3af9e28c16a6ca091164f

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29472ce7ad7f8c3d4e378631bc52d51ccf880d0ab3244c450ddb61a7b0988c05
MD5 69734c420692aeb48585c3a5d98ee0a2
BLAKE2b-256 efb5e33413647e2a3075dea93537d9543c322e798d32a374372e608a993587f3

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5318a3473e8b632dd5d6fa95e6b7fcb009ea55a0be4b739a4b1680d5f94f262
MD5 c90a422bcd7bcce0d51b858b43dd3636
BLAKE2b-256 4f9792eadd1ff5d4c1ace536855740a1436327c971b470674c3be3a45a70643b

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3eb8436a13fb8c2b560f07053e913aa8bc89112562da090a3010385dbe9c0a2e
MD5 e80f06ab2f776bf9eb99fb731d968e1c
BLAKE2b-256 8dfea9edac7167693165c948094a153610789a96a1e40d7d5b8473ba56f8796a

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b3b248b8eee832ec7b5f473b55b811ac6bd36ff69584db2bcb6925c3e8a3a9bf
MD5 fec419295de74cf202dffbb7889fa4a0
BLAKE2b-256 c7cf21c1518f3d59da399785c8d5e2ab91acc4198b6e8655da3e765af8ad77c8

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a3a35be8f2caa9ff0ed70e5a5d88773cc7bfaa4b86707e72f3b306e131e9cce
MD5 61a7ca784553bde60e43738cea88c1a7
BLAKE2b-256 a46280f9de9700be0d39c8cea55e277251b53abea40b422b7994058021a3956c

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 071eb608b93f6d4ed2ca85d44574be88d3091c5dadea552df1fd83d6c929e32a
MD5 9c497739518a98f68864372a8f787726
BLAKE2b-256 0896f010674f5581196ce95e0ab8ab0f4e237062095469e5aace02940d61a360

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 212c56a8acdb0575d8a586c6a2e14b51bc60a97ba2786240e8bcb3d44eafbf94
MD5 2e0a9466a1eb1b8dc8e4655ecc04380c
BLAKE2b-256 ca3e028f8beedc7b460341ddb08acd23975f8de8e177cae1c96b25d7cb5fade8

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e8b940c90a7788fd8b08d3514e86c16c0e8e0e2cdbaa2c95404edcaee3851e5f
MD5 22e229be8af05c29a73b39c73fedf46e
BLAKE2b-256 999546952098ced3a3e6167989089ed0e3cc1d4a7f5075c3800f21deccf216c9

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b26ae6fcb8783acb15502b84fd11486381f2b13fb85bbbe9383066a1689d2111
MD5 8b0213d889bc4cad20615f65e5c62bce
BLAKE2b-256 0b7d9c00291b07ed0ef2aa15ccfbc7d2889b791b3f54a2e51c87270caeef39e7

See more details on using hashes here.

File details

Details for the file thinc-8.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 412abb2642d575a364dd3ae70924e6be887ee2206ae784e194cde247e07be9a7
MD5 a696eb33a837bec5140f9e2b01b4e1b7
BLAKE2b-256 e910bafd29f3f4511c0635d548456b7d18355bae7db37d519d4a9279625d6899

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page