Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.2.1.tar.gz (192.1 kB view details)

Uploaded Source

Built Distributions

thinc-8.2.1-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

thinc-8.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (863.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (817.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp312-cp312-macosx_11_0_arm64.whl (756.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

thinc-8.2.1-cp312-cp312-macosx_10_9_x86_64.whl (825.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

thinc-8.2.1-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (866.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp311-cp311-macosx_11_0_arm64.whl (777.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.2.1-cp311-cp311-macosx_10_9_x86_64.whl (859.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.2.1-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (866.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp310-cp310-macosx_11_0_arm64.whl (785.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.2.1-cp310-cp310-macosx_10_9_x86_64.whl (868.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.2.1-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (936.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (880.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp39-cp39-macosx_11_0_arm64.whl (791.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.2.1-cp39-cp39-macosx_10_9_x86_64.whl (876.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.2.1-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (932.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (876.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp38-cp38-macosx_11_0_arm64.whl (777.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.2.1-cp38-cp38-macosx_10_9_x86_64.whl (858.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.2.1-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (870.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (849.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.2.1-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (871.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

thinc-8.2.1-cp36-cp36m-macosx_10_9_x86_64.whl (850.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file thinc-8.2.1.tar.gz.

File metadata

  • Download URL: thinc-8.2.1.tar.gz
  • Upload date:
  • Size: 192.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1.tar.gz
Algorithm Hash digest
SHA256 cd7fdb3d883a15e6906254e7fb0162f69878e9ccdd1f8519db6ffbfe46bf6f49
MD5 80b0243678bceaf6915b8abfe8af5793
BLAKE2b-256 b2c89641507cde8ef43ece2b0267f9c9d558c4d463e2d0a56aa4d11438687c3e

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9cf766fac7e845e96e509ac9545ea1a60034a069aee3d75068b6e46da084c206
MD5 4415ad058d347b29116ee9a68cd25902
BLAKE2b-256 7751c40aa36f1835f187a5a727e1a3c2dcb44071a9f87ac2398352731fbed3fb

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be1f169f01451010822cde5052db3fee25a0793abebe8fbd48d02955a33d0692
MD5 106ee46884b1126e64212b95ea6db96f
BLAKE2b-256 db9278c3b22c6ac11623fccb372770c318461404f3e4d6a2b19bce91e25966c9

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8a1bc995cace52503c906b87ff0cf428b94435b8b70539c6e6ad29b526925c5
MD5 ab9998a648de695a2882a5fc31ffac1f
BLAKE2b-256 79969a3c7ef0e02ae957e66463ecc9f68f7e83e8613f8e166822e17dc7900d7f

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0fe6f36faa5a0a69d267d7196d821a9730b3bf1817941db2a83780a199599cd5
MD5 3627730248ea70d726b6824ad05e9310
BLAKE2b-256 866392c9e5d0941a7f89e5c36b3eaed9988aea08f231aaf468568973af256a6e

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70fabf9e3d7f4da9804be9d29800dab7506cac12598735edb05ed1cec7b2ee50
MD5 966d22193f2698a917440ebd975b0358
BLAKE2b-256 512007acf6b3fee68ddf3fc0f933ce2e4e47b8cff5522218bb1e11eb9ecaddc7

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5bbefd9939302ebed6d48f57b959be899b23a0c85f1afaf50c82e7b493e5de04
MD5 47ca1449621c9e61627d120f696cabae
BLAKE2b-256 dde9c806bd2b281cc4cb5eea9375c3f45f6c4ff293877f469bb38d78a4f1cf96

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a2ce2f93a06f8e56796fd2b9d237b6f6ef36ccd9dec66cb38d0092a3947c875
MD5 b18fc933ab88586245dc9d6a401aee0e
BLAKE2b-256 077df60693126441972336c094ff4eecbcb61d78ea6e92d2e4be4bf305bbe6e4

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d6257369950002abe09d64b4f161d10d73af5df3764aea89f70cae018cca14b
MD5 f33bde9edd6d93c4de871235c3442f63
BLAKE2b-256 8668caeb9097ecb0e1f8ee946738df510df825322b739845d45844ad1cefc64b

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4704354879abb052fbd2c658cd6df20d7bba40790ded0e81e994c879849b62f4
MD5 e0586e00f7563f368e36cd8c780ed8df
BLAKE2b-256 97d60321fa57b30bde80e2297e5835915f56edef58b6e6a970f8c09a30b446aa

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0afbcd243d27c076b8c47aded8e5e0aff2ff683af6b95a39839fe3aea862cfd9
MD5 279ef7f0fdbc1dc02863473b3ab8081a
BLAKE2b-256 ea412108196a2dd4815fd9efab3aa5e4e15bb26d8f1cd5bc23570f1242dfeb9a

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b02dadc3e41dd5cfd515f0c60aa3e5c472e02c12613a1bb9d837ce5f49cf9d34
MD5 b2ecb54d8674e9a3e05eff67a90d1886
BLAKE2b-256 c3b4d3652585e9819d9cc197e4287112caaea388caa5819640bfe679291665d0

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 228dabcb8667ff19b2576718e4201b203c3f78dfbed4fa79caab8eef6d5fed48
MD5 47506380e0aacbaf32689e5f11fb6a9e
BLAKE2b-256 a975fefdbcb0f32ccc4c67042d3554734b8c5203d9fa7e30112f57af5a7e33d8

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca97679f14f3cd73be76375d6792ac2685c7eca50260cef1810415a2c75ac6c5
MD5 664f731736a3e67b8dcd4e828d27489a
BLAKE2b-256 783be9497e0bb98dfeaf3ebbd00d4337bc45d31428a66d65b70bb24a5dcd55ba

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e1a558b323f15f60bd79ba3cb95f78945e76748684db00052587270217b96a5
MD5 09cb27f68628e975f415457f948d7d83
BLAKE2b-256 f02a2de076c9c69c43bc4f5987f8a56361051fda290ee9eb629114fbe7479727

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67948bbcf86c3ace8838ca4cdb72977b051d8ee024eeb631d94467be18b15271
MD5 d9798d91eb60aeb618e1f08d2ad61924
BLAKE2b-256 3f3e2412fa680e586d41b7cfa5e1648017962e41c5b982b732b98f2fec85773b

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 229efc84666901730e5575d5ec3c852d02009478411b24c0640f45b42e87a21c
MD5 febda9a98b354aa4f941951ee59f4d61
BLAKE2b-256 fa2e53fcd053a57e8e869fa4345058abce40a67bb54ef6b33c1c359c9af3b107

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19387a23ef2ce2714572040c15f0896b6e0d3751e37ccc1d927c0447f8eac7a1
MD5 6b6a53fa93c61bafb16f9f7a6143dec3
BLAKE2b-256 ae783c49c65e9585a212be9780adf208a8fb3995b54b977958848ebed7f4b88f

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ab83ade836933e34a82c61ff9fe0cb3ea9103165935ce9ea12102aff270dad9
MD5 08efb0b999be064f9e50059c403b9d9b
BLAKE2b-256 5460301891732b27951a42302b32e2d34e908f20f8a7e5b542943472c2665111

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e8181d86b1c8de8dae154ad02399a8d59beb62881c172926594a5f3d7dc0e625
MD5 b2237eb4760cac5e30a448a8af0b7963
BLAKE2b-256 61d7c8705fbdcf0ead3136b782c4451e7c9c9e30327012c9f6271f68db59679a

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5978a97b35a36adb133a83b9fc6cbb9f0c364f8db8525fa0ef5c4fc03f25b889
MD5 b1b6aac65076a05d1c847c1f77f13bd9
BLAKE2b-256 a440ff7e1b5f953a1f4cd791bec7adb957f7601987b46b1274ddaba8c6f872d2

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 88dab842c68c8e9f0b75a7b4352b53eaa385db2a1de91e276219bfcfda27e47b
MD5 652857f8f1ee6f74e238982881f33d87
BLAKE2b-256 d1dae7bcdcb259d368213dcc7f9c29244a80153534fc364f0d06e82b7fe441d5

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c27bab1026284fba355eda7d83ebc0612ace437fb50ddc9d390e71d732b67e20
MD5 da4f5482d48d6639feba33744f9a8767
BLAKE2b-256 26360f36bfab97b81a3cb5f3373554d3837e97a72d4aa9eda14a2484108cdd98

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 637fafb7d3b51f2aa611371761578fe9999d2675f4fc87eb09e736648d12be30
MD5 981eff81fd9bf48494c320a5289f7b10
BLAKE2b-256 1ba0ffe81ebd9f62af5264b6a62519c3d06ac96a7e30c6c108964e76b3d94633

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16e7c0988df852cbae40ac03f45e11e3c39300b05dff87267c6fc13108723985
MD5 14f46457587abb99f5b73cfc980b2de6
BLAKE2b-256 8108b374a227c28452db4ff40860f4a2614ed951aa19da8ab11c57de0c132faa

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0216e17be5ddcc1014af55d2e02388698fb64dbc9f32a4782df0a3860615057
MD5 0305a740dd9eba166405a62a02dbeb44
BLAKE2b-256 ff2147ac2273d5dff3b4efa7aa39db033acd1e1e3671977fecdf640fbe68d5de

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8a1a2ef7061e23507f8172adb7978f7b7bc0bd4ccb266149de7065ee5331e1ea
MD5 57719c82ec865e89ae11c8def6402525
BLAKE2b-256 97da72845607fc2715c5a2cc506ee05347661ba961c0018c1e80beb4cb6b7b73

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79e66eed14c2e7b333d69b376f8a091efad366e172b11e39c04814b54969b399
MD5 0d14b5a04d473e0119f4d739cd33f2b8
BLAKE2b-256 2606ff8bde8f812c033ba2bc8ea306a9c5294d8314d7e370f6773f37b61909da

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6eae5a3415ff9be0fa21671a58166e82fe6c9ee832252779fd92c31c03692fb7
MD5 905537938ddb53632214154063af7161
BLAKE2b-256 2f74cbfd3edffbb0482bc8963291b33ba19a47b2d2ec9e1b1cd343a795309b6a

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c32c1e1e60b5e676f1f618915fbb20547b573998693704d0b4987d972e35a62
MD5 9147189644d4168a363d1e0f01f20360
BLAKE2b-256 c6584a2fbfe617e0f6c5bbb6aedfd336b1d341c2ab0536e49d93b40e677d11e0

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 aaad5532c3abd2fe69500426a102a3b53725a78eba5ba6867bed9e6b8de0bcba
MD5 337dadd6ad06ddf7b75850c45d7eaa76
BLAKE2b-256 9a335ae8cc8ad2cbca1548485040475f892d2ac40cee1f1c898fd02b50f12234

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95e6ae6309f110440bcbd6a03b5b4b940d7c607afd2027a6b638336cc42a2171
MD5 c2c30ac21f9363a87db1f42c8cb71607
BLAKE2b-256 1c1c1eb467181d9f32b5b8338f1dc7fc3eac70bacba5afba020017ae9b665269

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 beda7380017df1fbdf8de1733851464886283786c3c9149e2ac7cef612eff6ed
MD5 6c349bd0b68e26e528bcd72bdf73c657
BLAKE2b-256 5e54fb741030d7ef5d16ad396a59400fe2a74bc87b1d0e8005528f7ea94cd49b

See more details on using hashes here.

File details

Details for the file thinc-8.2.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ad99b6d1f7c149137497c6ae9345304fd7465c0c290c00cedd504ff5ae5485d
MD5 fcc3c57991967ed5e1949927f09c06d2
BLAKE2b-256 1a997b8202b8a780852e2bb0500ee6fa314abb1d6d22bffab34da1cf82be36c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page