Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.2.2.tar.gz (192.8 kB view details)

Uploaded Source

Built Distributions

thinc-8.2.2-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

thinc-8.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (865.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (818.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp312-cp312-macosx_11_0_arm64.whl (758.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

thinc-8.2.2-cp312-cp312-macosx_10_9_x86_64.whl (827.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

thinc-8.2.2-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp311-cp311-macosx_11_0_arm64.whl (778.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.2.2-cp311-cp311-macosx_10_9_x86_64.whl (861.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.2.2-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp310-cp310-macosx_11_0_arm64.whl (787.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.2.2-cp310-cp310-macosx_10_9_x86_64.whl (870.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.2.2-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (937.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp39-cp39-macosx_11_0_arm64.whl (793.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.2.2-cp39-cp39-macosx_10_9_x86_64.whl (878.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.2.2-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (934.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (878.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp38-cp38-macosx_11_0_arm64.whl (778.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.2.2-cp38-cp38-macosx_10_9_x86_64.whl (860.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.2.2-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (921.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (872.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp37-cp37m-macosx_10_9_x86_64.whl (851.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.2.2-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.2.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.2.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (873.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

thinc-8.2.2-cp36-cp36m-macosx_10_9_x86_64.whl (851.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file thinc-8.2.2.tar.gz.

File metadata

  • Download URL: thinc-8.2.2.tar.gz
  • Upload date:
  • Size: 192.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2.tar.gz
Algorithm Hash digest
SHA256 6e85b944672c0f95241a71f67f9882e1ab319c449a47740b0d159f4cf86d1587
MD5 3a117803df7eb81e3cf8502789367616
BLAKE2b-256 6119f38625fadcfb0e5c97d1abb7f9d14e9890f946ff0e72c8d7b8a8ba2b2d8c

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fd58790296002f24998615ae3cbb2c52d23129a15d8c975e9135208902816934
MD5 a0985cd43da5e6bf1696ec6a4432d170
BLAKE2b-256 88eb76fe22278667eaa8c394f541e01cdac13ed60cb02ff551cf55cbef0aa159

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6607dfaec70787a3332bade5b1fb7a53333fe6945f7a8fdc2f162d88206bd5cf
MD5 715917d86aa271e52eb929a174488a4d
BLAKE2b-256 35c8ac10bda95f612c6b04829ef624452c172025a60a42fad7f1826de3bdfb85

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b35a4f95d760a64f9057f35f569c50528768345a6bab00d412a03a4569b36dd
MD5 c8bbafb5d5c0a53103cf4a6de3937078
BLAKE2b-256 0407b760a7bb3b15c6988021b09ffe2b9ebeec845dc8249979ebbd71d941d0cb

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db60de27edffe795a8b3a1bf89c3a4821928a4bc783ae060a67a079d034c5f9e
MD5 ef37686f64548c39c1dcd8736efd0608
BLAKE2b-256 3e673913ce43b3a5d99e49fb8d2d958b6e83904cb74b3fc06e376655574b04ce

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5b33f63639994f483fa0f1a8f01b8c5a0c972ecc3c8d35fc89480ac1cfa3d8b
MD5 2b8143ee3097fb150f4587c5c1395e27
BLAKE2b-256 b972af0d053314d560fd9c0820590d4f59060fa3540e1bc4ac1048d4ee2035dc

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bfc9f3fe03a1be223181b1af18edf981cc938324b30a69a8009924a02ccb3a0b
MD5 0e6753829d619f33e15598e4bcfc52b2
BLAKE2b-256 7424564a7df5b1fac0520f6b55137deea2cc0b6f7d6e66228f1645dbfd59bb33

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e47a7e359b336e01e5303945d195c5de3bf04d44b5de9d5ac3b906bfd98cbadc
MD5 633a5853537acdf83600c2c56c821542
BLAKE2b-256 fae8b777ff1a68e1adba1c7810f73847548b925a1a689de46831a33bda4f19f4

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8110f150b2255de98261ff859e0c7ab633f78d4afb2e5279983465da887ccf49
MD5 463810910f285e88ef75cf808a4856e8
BLAKE2b-256 86ea462624f7b02731d491b9499c42ea022688b606a4349e7bae9e2a23b26dd0

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9328be7df60a91d68ae70199dd8ca6ca1bc41817a76c91ae81bed70567107067
MD5 a0e4d522523f1103300b5888993b1c9f
BLAKE2b-256 c8430ee5796e9bf91eb8e1e032b4ef407e2fbec7cb2e3da9b13f44a2d2f82607

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e4ec23d5054fbed4791da2de1187a78c33513ef273996f1ae759ff16bcc2a6a
MD5 6bd4f5543258bf6e1ea1a557e482c82f
BLAKE2b-256 4a88344dd58afa62deecae6743efb38b56f7f9eacdad1e7a5cab05fffa8cf6b7

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e69ace01f9e4d4bca8ef4d39d1520d8abb18c7910633fdf8b2b55db0cd774dac
MD5 4c6403a1283ce0ca42a1d064ad28a656
BLAKE2b-256 eeb3323406dbd696fc2375e1c7ccaf6a680f82f7cf5838840b7fb19c238fbd6c

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05b7599656a15f325c5e244df84cd90aa76d8d511bf3640ba7edbda94670cb61
MD5 cdab3aa188d977220cbe357e4af156b2
BLAKE2b-256 c659393e03ba610355f927dffcb7303adad28c03cc772f02ed311019a952ce62

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c38fd89d0d0e50198559bace73d9132b53a4d96d4dcec4c5024d00b958d9b4d8
MD5 726b6cc66fbf9af8526331ef4c10ff5f
BLAKE2b-256 16b3d1328eb56bd4d59d14a3ce9b9a37506019547db7f4b544d065e4be3ab28a

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbefd12c56f77f4e1daff546cbf6417943d8885a0cbd961f7d2de7ffd94302a0
MD5 9596b4c585769b23a3c9515f4c64a71f
BLAKE2b-256 edc6b3299f1e1e35940d338cfda44b4438a06da28aad8212a49c230d1b9ae0e4

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f01ab734e3b670cde7692399252c34acac04c48d2394bde0f3c9f089c0b79938
MD5 92f694112f1fdea02fa611764a3a5a12
BLAKE2b-256 a65d9e36a1e4cef61a4fbfb4466ec9447925c3da089b7bb4343c294993ef24ac

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5536f1f10b561e877df6198d96555befccc707744db524089eb7ba3fcc7b8206
MD5 8204473406cf34ea7a4b2c3289a509b4
BLAKE2b-256 3c9224b40ec3ddfd44899dcac082a07ef446091ce8bdf7f42b1d8a03604fb342

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa2c56bca9ade6d6f2b4d187b439fb2dd164299087cd0225501e4dc5ca6f4fad
MD5 57a072ba21270fd7e7178ce631d05b1b
BLAKE2b-256 481bafb05d5f2478e91203a09ef8b1cd72ea082016432d1c602eeb2f74a73fc1

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a4c5b8fba15a3d3a6a7965505c11b2d779eeb78d87ad8877c126d752e6eb595
MD5 9fe9bff9107471b8d0d4489932734d18
BLAKE2b-256 dda5f464bb7f7fb9c9778203c77a63a2cd2732720e981489c306a836dda3830b

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04e7e675df6bcd7e5a61d1d2d2d886f5c1b2e34709601c3934e7c71b3ecd2176
MD5 ebaa25cb04a2d4c69d6687d596c5efd2
BLAKE2b-256 0ea277a282de5b42b62ab86c3afeac19ff3f6af8c0dca184cf440de95d9bd767

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 464d1ac6c3eb13edb49b2b27c45cd9547aba369a6a5202970bbcd1af8a5a7646
MD5 a8acff9de6b47e2f204d72bd84f12271
BLAKE2b-256 e1edf79a5e8d452eb56c2fca37408ca029243c44ab2a39b202fcc93ae74a86e6

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7ca835bdd4e7dfa53f31144cb6f75adf7b0e2dac596f1bddf81328e930d34ba9
MD5 383f43463c417103f7977ec0eaef7161
BLAKE2b-256 26ae86a52d8b9d39895b5ce7410d494084dd4754e1d6bd97776df813b203f47e

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5cdfb38bfba7f443ad9d768398f30d0f8d6b5a0f5b40480f930b037072af95f8
MD5 caab4753c893577885d4814ba90f7477
BLAKE2b-256 29cb1853174543f23e4febe46f7d46ff7294c2b34e34765ee6a1e3b4cf2a8ce1

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33ecb014bca3e8a2f0f11c8e63c65be68e057df9d0463625e89f31ad11386efd
MD5 ff2a7d5b75184fc7bfad49dedd37e386
BLAKE2b-256 5681fe07087a9a772849cda85ad60a3b2489f4e866d0b846673f8d07332a2ec3

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cde01b50e82e829e6a647741768818d9ea5239ea68252457ba26f0e45c69e3eb
MD5 07a3f6fa9041300fb08014a6d2f32809
BLAKE2b-256 8c3e12335a903e8cede9a56be261225ce93b0cdb292cdcbb5f9686ff7bfbe298

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0df0eb6c0529f2f63410bdc0671d234202e6a23775cd13d0b7785f8b7ecdcd8a
MD5 d597411c219e41445aec973d4cc205b3
BLAKE2b-256 d4caea00b75d430092f30335afaf0ab000d510fc5f232ed44f3ddffd23cfb7e2

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d0b0f7517aef458e602748561e45079cc970161d39bdf790627e5455249ff096
MD5 2677de2f3f44042597d7b259eb99d342
BLAKE2b-256 3e5770a4e5f04eacb82f450dbb9b4f1f0823cc74bb3e49fbc00ce46799d3d01a

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32c6cd566612ff7ffd8930570e725f31fe06134ffd282454ffb3091d1d152fc5
MD5 a4f06d9eb4694609eaa130b9d9806af5
BLAKE2b-256 f2715ec1af93c048eb60fbd980f118537a62a1ce1a634b8eb55925253f496f94

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54ceb78a05a14394c1401771cf7b03af6bc0cfdcb877b786dee6c0f6d403001c
MD5 e546ffe52850d996a1abe215afedfe9e
BLAKE2b-256 3ca6070167f1b3187c701e3d8b25e984cd154eb0c2e6a892d34bd71ba78fa3ab

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40d506312668a6e613f3c78d2c38646974097dd8b4eb9f953e2ea820701b5df2
MD5 b6148651fbbc3267cb270df992fc9e5c
BLAKE2b-256 3cf5f919cdff6d0dec65548f0744e6e3039158cf1a218348fad6e007cb8200a1

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a47c71d4ae0c2ca600546dfcb9e6019754cee8a36bd6df07737e915e090bd8f8
MD5 e2dc93350cc950c12e8fad0503a33ba1
BLAKE2b-256 700505c7b198a4e301380b3aea0f8435f0c362f8c5e4caf98de2e6cc67d6e370

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6ac8bcef0be5536cad66b99ecef8ea4d7d7105c65e6db9f00795513ba597b55
MD5 74a85b019dd9c400fb81777b63ba76ab
BLAKE2b-256 719442ead647771c4e0ee6264dad4f404df22ffde142c89a6c305fd3f8758996

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 013afe3bc625bc289483608c79c34066080661a94084b3882a914994b1315e93
MD5 73cd570555fde66bee541756754358d3
BLAKE2b-256 9b8bf827a5f2346860d6361d61fbdf0dd3d4c03f09e4c4dfbfb162040ecf6652

See more details on using hashes here.

File details

Details for the file thinc-8.2.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31d945fd40de0bf9d82b5c411527b10d508360436d0a9b31e1f6c845e6ef1687
MD5 df73f4cf67186bee54cb6ca6ac1dda69
BLAKE2b-256 379de5af877f736559be5563077a28fecbc62a5186398733052d084273554597

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page