Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

This version

8.2.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.2.3.tar.gz (192.9 kB view details)

Uploaded Source

Built Distributions

thinc-8.2.3-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

thinc-8.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (865.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (818.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp312-cp312-macosx_11_0_arm64.whl (760.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

thinc-8.2.3-cp312-cp312-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

thinc-8.2.3-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp311-cp311-macosx_11_0_arm64.whl (781.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.2.3-cp311-cp311-macosx_10_9_x86_64.whl (863.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.2.3-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp310-cp310-macosx_11_0_arm64.whl (789.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.2.3-cp310-cp310-macosx_10_9_x86_64.whl (872.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.2.3-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (937.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp39-cp39-macosx_11_0_arm64.whl (795.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.2.3-cp39-cp39-macosx_10_9_x86_64.whl (880.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.2.3-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (934.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (878.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp38-cp38-macosx_11_0_arm64.whl (781.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.2.3-cp38-cp38-macosx_10_9_x86_64.whl (862.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.2.3-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (921.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (872.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp37-cp37m-macosx_10_9_x86_64.whl (853.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.2.3-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.2.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (873.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

thinc-8.2.3-cp36-cp36m-macosx_10_9_x86_64.whl (851.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file thinc-8.2.3.tar.gz.

File metadata

  • Download URL: thinc-8.2.3.tar.gz
  • Upload date:
  • Size: 192.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3.tar.gz
Algorithm Hash digest
SHA256 f5afc5222912a80bda8bdcec958362a2ba538d7027dc8db6154845d2859dca76
MD5 e39442e620ad94664cbeede96fa8d02f
BLAKE2b-256 a497064317586536d825c36037a9e99046f76b174d966f281291803f6991799b

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a336f8cae7374d1768a52e63a5084a1208e30b8761eede113d2703e43e7839f1
MD5 703aaf5ebd6aef7ff6b5b2e3f2aa9c31
BLAKE2b-256 619e4456a32dc45d351a4dfb340832943a87a9b7e221a1c3e8c9196a2c192f7e

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2817bde75c92f98fee747efdbebca68d16158b808401c5a922ba54a5f2619e9b
MD5 2d91a1a3cef8e6b8a28d9333bd99ae00
BLAKE2b-256 c38cad31382cf98865a33155aca2baa697c8367949a2f3f24414775a4292e1c8

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0a7f29ad534b6e761ee24d0c9e7402447e8ed4e772922795f77c98d88d7f99c
MD5 c029952c55dcaf9ce031706e98e45583
BLAKE2b-256 4524bd8021f1755078ef994544dfbe5ad9e95c8abd43e2ede057e88db26a5dc8

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c11ab3236e56311568f1e84099bfbeea3a4ee2434758a32982b224ddf8bad9c5
MD5 0d8574c83b38077eb5efad7481b2db19
BLAKE2b-256 e5011d7409b468b49a18e574d60ff7c9b086ad86303215588df1c65f6ec48c47

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb7c64d0cb8066c47af9441cd611e89a0e2b28b85f2fffbdec791724c81e1915
MD5 b5d4892a80816021fb3dae1053d6c931
BLAKE2b-256 1cf1f896adb7703a6bc8cb89d196f2c203bcc7332ed33c6970a11ea00fbfb471

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0bf3840d434e3dbdf294643e6d54d2042d0e652abc68dee16673f28269fc456
MD5 bd9c4e470b86653fc91ad1b8443e86c6
BLAKE2b-256 dea5c242d57dc7a8afe677aa48ce370d84be3d04523cbb819c4a36b64f35155c

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9489ae7fec427064a50a0c3e7c661a95251756032e31316add2c8c13f98f93c
MD5 3bd1e60660d8e68e47ad64e60ef44c86
BLAKE2b-256 78c1720e91ab46b4bf95d28f2e7c7e1f4c222a8340c4f88ebb21cd961a34d37a

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78311a593b8bf3f03af52bf71d6b364463c598f3540ea8387c00017d2a0e0a5d
MD5 c858f9e435802d74302bb06701acb7e4
BLAKE2b-256 270141948a3f480af5c82675bc265178884037822070e0e7725e20c6b30e35ea

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d57bdf43e0acd1406d681bf988179f677cf1b385c86f744bf314d827383ce31
MD5 a58adbe72f527a7700dc80d9e6ceae22
BLAKE2b-256 05482cf60744d60d07d789ce5cf6230fe2140612bc3f8ae70a89bc980ea27a28

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9db67f460dae2e3aada1ff166394ce13c2dabb4db93d6bd79cd256f5beab9599
MD5 97451b7ecc85b081006f8b08dec35581
BLAKE2b-256 2a82a1f2a6c583fc90a4e13efbd42352389d8c082f9810724ff6526374b471c2

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 53b48a6ae43b0e4054816a378163237b1d2120a49c71994682037437d64b7f84
MD5 b141ea0a68adb0964b993a1db91f8ecb
BLAKE2b-256 aa397e2aa8b46b430c4d19676a4ff9f36b329788723c05e6187539daca209da2

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 607223c178ae5fba36a3b35fa82d94a453694551bcfbe7f9ac04a01a9e87ebad
MD5 ad05bc64f8e744c22cdfac4122f86df0
BLAKE2b-256 e05fdae07e6bca8a16a2a26099cc0c1cad73b47b597518cb3bfcb549e64f8ba4

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce0fb4e534c978ff4b429678ab28db2f81503549f97ed61b2b752c07c08b2083
MD5 8cdda265c583e28cec174f049a2caf7a
BLAKE2b-256 22f43c03fa4ab5b4437c7cb8c344ef87381edbd94fc5ecb2b7f5598d3cf95365

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fce09571619f344983f915f5deb5b8346304b56d3a9ae1bc5ac8c5872eee0738
MD5 bb7a8d024badae9b4407764c2c8699d6
BLAKE2b-256 95630eb03dd058205536d557748df089e8310212a6657582047cefe6df4f4999

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27950dc8a14e1ead09dec329ad98edf1b8f7cc71ec9d5ce5f301073de9d7dadf
MD5 1e8b4d507a282f5d68c05bfe98626ba8
BLAKE2b-256 6d6e774c111e93259ee34a65ae4544e4842527f9ac88ca0ae199041115752972

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1df983af74952d4818703e6bac8af64fad338eaaef8b017fa05d372e3c68e577
MD5 45d76ab2f32b4dd2965df16d32fb21ba
BLAKE2b-256 83e66bec8d6fd6312ea86f02fdbdd887f4d3a39c300ed9ea2b4b46e094cb628e

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9b81e3c1e89c8ed6dff5a8440f584cda623ec77a3bd8c0ed059936405b8a7ca
MD5 55b7e03c11a0fe2e47020c33b68c6c8f
BLAKE2b-256 4b0cf402740a7ff33752317d5645821e47067b7f616cc7228336139f173b67d0

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8709d114131680bc7c02b0c97817bd7692eda50beb7849c7908666cf15a6cfd
MD5 a5876cca3d1dbd25287551050f23f1c1
BLAKE2b-256 02206307e0fc5f2932a2d1993637f75639d75f4c2375cd73fa82f449894a3d69

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d29ee871cfd0d40f4a0436e154640c0965b163b91a088a85bcd5658c1cc3ed4
MD5 c23281a6c0f3d0805a8257233c7cbc09
BLAKE2b-256 59b5b19edc785568a7097864784e9430bc10286c984927e9b9386b3be8e4d79f

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e6ebf63a185d7691b38655a184e30554fbe589805a802d97230eed07af8ea39
MD5 479f68fc57258b0f6f68098f7bfa489e
BLAKE2b-256 d05356debd3c284263ab555c11bc46e265fcc84f913bd82d645818243e95f345

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 45e6416e56d5101d0557e31cd06235d80fc89e9ac455ef1b444c440cb3c1ce64
MD5 06201a1777094aa2ccd1d751c6470d3e
BLAKE2b-256 ee506837eb91d4e037e783059bbead4625886ca954201503ef9d3631263a8875

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 324e5d2c98f787d82d239cf33cee425e1c11e34a3c96cb3f4e1ee5661abef50c
MD5 88f1eb75eb93f02090900a261b23851b
BLAKE2b-256 4acaaf45017ab6e666ded32db8c94d083e5f26d0c304b6b41188646a5b9d5260

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aead20abe233adade3c37daeb9d08e5429dfcada81856b1f2b1b7e4a67a671a0
MD5 86f9279d6782468baedb90f26f495c40
BLAKE2b-256 e75f2953b5e2bded56ebd0c37bc093ba8ebb8a2db58cd257e5c6e09ad9de35c6

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8b0309d14bcfdad24b1e8bb87f8b245acfd7eb5305be466c284c788adf026ffa
MD5 bcf608be1ebd648243969ef7a4472e9a
BLAKE2b-256 3f7caeda4dc216bab0a07ad50d9546e85e60d48e5d35a9805687b65e087a7343

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97605421b898441733fda24c6dda74a85325fbeebc808176857b0a8e6e7a9d47
MD5 db7fec96be9a2459d68fc0fd7121761d
BLAKE2b-256 eb48165d5386a60369bd1d804e80a20a54b37bfdf4663569101cdf91012c4b04

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4d448c8a870f594125cbfadc91024ce67683eae5698207101d2ea4793ab222a1
MD5 683dab94600a2434310f673cc54440f6
BLAKE2b-256 5e64f8cca5c448ee0a4f32ed41a98cf449d7e84af7fa6985395a084ec67566fe

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa65182424efda03be9359c3540928bf2985792f89826a76ee475c7c6b2ec64f
MD5 12623a0d38119c1704740f2406de8a65
BLAKE2b-256 de7d14a5963e579e1ca09ef142319de744c0b39ba0a07624a7eb534d900c85bc

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f01a7107c36c4fc60b60fdbda30d76a0ac9bc8f4f9c7f6872db62250e2f836a5
MD5 290989cf5c19d6f82c46c6c9a3919ae4
BLAKE2b-256 e92afc93503054b248c6e13c81ef432b7588323f54a68f62a7ec7fd0046235b5

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd25b781faae71c52ba053157ab1865f4163be1a6485e70a007855a037ba060f
MD5 59e614c6bf63c0de03499e4f17ef73e6
BLAKE2b-256 2d4b895f39ef56c9ea894f77d3fb68592599a346a9d802c8b111ce4401b5b3e5

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9a29a9ca7a5060c923866f16ba7823a4540cfd708eafa7202ee89ac029e0b78b
MD5 8b64466e9082297f527f9918cba19b9c
BLAKE2b-256 9685d2bb0e9342f6bd6860ea595b3bc72b7888d11474538f1393f5d602e44d86

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83a6b46d5f0accf0c2b2e5ff05b1bffd4d99721513b6d0374574009b0aab292c
MD5 e5b7023b9f59c7cde5ff2c210ced139b
BLAKE2b-256 95b0c9cb2d4325da00ac4d7576b480cccdf7087bbab506c75aed1cf96e806ced

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c899b25442ed915bc77fa4cf07e908dea1bccab7c4b8d854cc0b261026d6a06
MD5 be5a0a657409d861c5f563fc73b35d28
BLAKE2b-256 7eb3b089f3ebf4ed2789b9932b810a7a4be702a79ebc239a53c5fbf562bc8001

See more details on using hashes here.

File details

Details for the file thinc-8.2.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45c1a2880329eae53da1d77a4898b7fd30faad445b28fdf92c5557dbf6492ff0
MD5 17dc292360d7992192cab990f94369f8
BLAKE2b-256 648b45287f17b4c9044d752a2442e7e5561798cd9de3310af059b0c9a8e255ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page