Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

This version

8.2.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-8.2.4.tar.gz (193.0 kB view details)

Uploaded Source

Built Distributions

thinc-8.2.4-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

thinc-8.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (865.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (818.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp312-cp312-macosx_11_0_arm64.whl (760.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

thinc-8.2.4-cp312-cp312-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

thinc-8.2.4-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-8.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp311-cp311-macosx_11_0_arm64.whl (781.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-8.2.4-cp311-cp311-macosx_10_9_x86_64.whl (863.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-8.2.4-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-8.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (922.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (868.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp310-cp310-macosx_11_0_arm64.whl (789.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-8.2.4-cp310-cp310-macosx_10_9_x86_64.whl (872.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-8.2.4-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-8.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (937.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (882.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp39-cp39-macosx_11_0_arm64.whl (795.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-8.2.4-cp39-cp39-macosx_10_9_x86_64.whl (880.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

thinc-8.2.4-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

thinc-8.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (934.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (878.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp38-cp38-macosx_11_0_arm64.whl (781.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

thinc-8.2.4-cp38-cp38-macosx_10_9_x86_64.whl (862.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

thinc-8.2.4-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

thinc-8.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (921.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (872.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp37-cp37m-macosx_10_9_x86_64.whl (853.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

thinc-8.2.4-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

thinc-8.2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

thinc-8.2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (873.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

thinc-8.2.4-cp36-cp36m-macosx_10_9_x86_64.whl (851.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file thinc-8.2.4.tar.gz.

File metadata

  • Download URL: thinc-8.2.4.tar.gz
  • Upload date:
  • Size: 193.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4.tar.gz
Algorithm Hash digest
SHA256 9383b39f286291519ebbb6454bab76404992599b0cbdfaec56b2f985023186a7
MD5 21489904800f9ad43b80c83232c38af6
BLAKE2b-256 39e612f9d4ade7af128db91f725675bc9f417e6f6ea777478f5c1c3140a105a9

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ebfd9d79d2bdadec551cb9ca8c7fdeacb56db642158c56cdb039de47e9aad995
MD5 edd7146fe628aba8ffad5049b058ef3f
BLAKE2b-256 684ae8e172cc172e514d39f3f9dc33a60d44bab420ce0bb1b696e4e97cce63db

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4a22e76e4651fb6b209cfba2e1c167e8537286ae35fb87769a17af491f995b5
MD5 d9550a3d9ac268bf216b10a7990f1e43
BLAKE2b-256 651c83d806f09a7d8a0b4ff76c93330c07dfec5bd5105160f45e890f7af0b7c2

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b5c3874361a1d3c469dd7c9054d4d16b7afcf791e9c47705766d690685fe702d
MD5 f5633fe930f05507ae8ae574f6b24f93
BLAKE2b-256 f0bed7b87674bc08805ebef56199595eb3aa7bd17f1230c4eb7416ec0369e9cb

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e28ba753cdf925ac25b52ea6c4baf5104c6ed6874d9e3dfe768ff98d5118db1
MD5 2996f7055c155dc12136a5acc70e0fb2
BLAKE2b-256 f0b28391b1e5400d7a8260b321c957fa4d2cca0754e16c1e2aad7c74dfd2e0f2

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 997a1a399af074b34e25695f37ad48f8437e7c150705891f4db89aeb430df35a
MD5 3f1ef5518cc6648199b87886d6ddc3b6
BLAKE2b-256 7409b9de561b34642a6f2f522bf17d29c7bd735fffa2964a677be62ec0b94311

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f8c6c006b7cbe3ebb543c224159b004b52a8ff8922615577656e1458ee4bbf0
MD5 f2986038d0b3dfa56f794cd071c0545f
BLAKE2b-256 46a934b82ee16f4b5da2ced75a068ea0ab616e178269af17d6555266a44dfcc4

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebc8ab48d19cd69ad9a0de2bbe49b7c20a91150faeb119638bea4c502c52b77f
MD5 6fab69c3c97d0d9300591a238abc7b0e
BLAKE2b-256 0606cb247012a34e7043f911e9bcb0bdf0b5daa37cd1130e51afaa48a61ff5a6

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b0e34bf322516a039e45c1da72eb82bcc97eb1f7c232b66b88f0c86f15a1202
MD5 4b7853f920f6fd9cf760798af5033b94
BLAKE2b-256 20a0dfc97237ae66d3ce9bb892c8b91ed729d1dfe01548f85953716169f98aec

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 baa4af044bfcaf9df6a02d6c6d6e96c960da540478a522daabfbde8923df3554
MD5 9b6133c142422df527d108dea60cb5eb
BLAKE2b-256 b33f7daca81216723222b3353dd9cefbda1ea2f3bfbac7ff9a725bfacbfa1c96

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccc58e47bc285e9afbf92ed6104f555abfa285a4b92198d955d344c4c1942607
MD5 d2fde08c295af4ca950dbd477adbb95d
BLAKE2b-256 4c5c7229e7c8878a480f352ab3536372287919f84c6396391c1709a73eb05182

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bb14e49ddb15770201682eda8381db6393f76580c1eb72d45e77e1202598116e
MD5 0798c243a05703c513c3a7a542076671
BLAKE2b-256 79ea23b5ad2d5090f026f1415398d6fa3569b1ca924f7f62c4678d4bedde2607

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5724ea71dbdbb0d0168471884b9b6909bedaccfda01524c5e775a6fbc39d1bc7
MD5 50d787702f0313108618711f8afae6d7
BLAKE2b-256 3b92d91652d4707e0bffa6fe03c1c4b4f59fec6d5cd6882a00a7663595d15cc5

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b53c092ab30abb9a3b46ef72a8a6af76db42822b550eff778b0decf95af572c4
MD5 94d68b30bdeb355ddb90da3b197cba1d
BLAKE2b-256 e1cbca7776c84d6badf80f30f4eb2cf7312091752db37a1f9eed201a2961a1a6

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a6c807cb75a22a17e5333377aff203dabf10daa457ce9e78b19f499a44dd816
MD5 dba80c10b5beaa9f3bde42df1a4c2996
BLAKE2b-256 6a596ddb2d2454a8b9ab37aadfc5face2cdcae4a7da3a36e1be15de7f2132b76

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aaae34c28ebc7a0ba980e6c774f148e272375ff7d4ef6ae2977698edae052e52
MD5 da617a7166c184dc25e1a7ffd3e2360d
BLAKE2b-256 511196917531e239e678f904736c03b9d2a7587a252c1a94b161f12b694b1dd8

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed514b3edb185c5531fcfd77a7b0a43c196a269f1e157a025d8138076ba6328d
MD5 779c91766b385908349f895a6cedc8e7
BLAKE2b-256 f38a31d90c2e1b50684adb25c915a92f605b3e61ce135cf5215529afea20cb5f

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abeb742352a106359ac76f048c0f4af745c59c75e02b68cc4d62cde20fcca0c5
MD5 d25e4f59974fa42a60d15a5c0c3a4b98
BLAKE2b-256 d930283a41b7debeae46541559c76d4c8aea854b70230b2a2a3360b4f5f9373f

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cbffb3d284c9a54cf8bfee606e47028a27a2d11b0b1e2b83137cc03169e8a8f1
MD5 bfe3a6dca50066433f4111d1ff708048
BLAKE2b-256 3aaf53be10f6e06f2f5bee4e31706dbf201ff2a2b070e9b0889114986fec0c89

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c466289b6fb40f477e32f99647e03256d0b1d775707778dac07973fd352c5220
MD5 d8cebf977b0b8066826c13c85a114191
BLAKE2b-256 a89b6ffcf80e9f33764b8febab46cb262105a9d996ce1ef52332aedebc4533b5

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03ab79a1734db519bd355d1c7eb41a2425d4d5c1ad4f416ea4e09cd42b8854a8
MD5 85c3ea7d64a3fa7eb07976c797f9be47
BLAKE2b-256 9624a91707d01d785600d6ca350c3a458f9bc02236751f354f4d0f180a6c66d7

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 58b172d3546ecd14d257e2f37e7b9784941caa919544604137810a5477f87c99
MD5 8c33b4dfcf387f897b0e33b6f93a299b
BLAKE2b-256 a02fa149a25ca4b307bcbaa7c1c73b4a846ae0b1392943a0de44944a94587917

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8f9e147b41a1e02c232d5cc4b2a333b47a245d9e87dbcd1b3f11636332a1ae5
MD5 dce22ef6655ec57cad48a91cfd07ff15
BLAKE2b-256 4bcfdb06689b2ab985ff8c506deb92c846eca5db128fb4120b4220add4450062

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a124684987554170c043ae9c497c5ebbd619a9cf2053462ff6b7e359541fbafd
MD5 af265c901ffd25afdbf4f6596161ce27
BLAKE2b-256 59bdfef67490ed7baa079aa4f50c432fb8732278c3bcbd0bab158055e0196493

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 334097a26742ff6552a2b1ff347207b8ce4048a70756e33849bab07122f13403
MD5 d645f3d7c028911047a087589d68bf8a
BLAKE2b-256 1b88b5c2425a8cad39c9def0c91162172ccb0734581df85dfb94a86a4666d76b

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5586115b2f3c1c9ecc8f9dbed4a26a46d44c40e8f6be0e58e63fb673271cd0d9
MD5 549b739935a669b09f580e7613556be8
BLAKE2b-256 8f2abef70bc941c7c7821d2a61a0ef403999df395a0c2a52c27b63404e5a5a6d

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 37ea70230bc4a149905e21ba620ad78ec5362b3cf8f9d1233523d6ec03a3b8e5
MD5 fb5ad37f08583eb44c86f1033cc09bad
BLAKE2b-256 431e1824671c2403da6ab77c0eb6eaaa6e104647ddcb2b1aa844458d3fa76132

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd67e210a4a67781c9864ef45e27ec009c1f4234c737c4a2d0964aeebd3d39a1
MD5 286eb6930e166931022fe0b64f9a7938
BLAKE2b-256 1f5482f7b55340fef0b3cc6a6ecbffe1ac10ce17935d843dd6f337bdd49a794d

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8ca9fcddc3852b733e4754f37bb4d20693192171f1e3e9714b00abe5d74fffeb
MD5 3e299e43d0576fae2ce72c8b4b9c3ff9
BLAKE2b-256 9ebc14392cf2186164aac2ada120cd9e6886a2e21979670ba0a105f3d031f650

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 21a5cb6633b4af8b49a18a3088cdcbc59756ce6a4202574f4151dd4df18bab49
MD5 fb0c9edbede0d6676834923cfdc460dd
BLAKE2b-256 1315ed662226e59920c87b6cf51b5e128855d53c4812c6130f7c5c264e54e289

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: thinc-8.2.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for thinc-8.2.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a276287e55b0ec50c7e8f1acef28f5353c59234af1efc54a19516328f50a6f68
MD5 d35b062a3a66dc4f7077a379d6aa6451
BLAKE2b-256 6832f31bd5179b99abdf6dbdfc7b5aa40255b4241ee33d01126c4f9c0263e1d0

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 795a7a1a03767a40d1e2a19fcf25c552a8d8765c78c1837514cabf5fe98817b9
MD5 05c6b1bee07b92190ac93036fc38fed5
BLAKE2b-256 b615ff788c1613e6c3e5a0d9b98dbc6f88e31c5be6b1655c7c602e579d70831a

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d879df0997959f9d7087b0e392e72e120bde5613eb8a7c1c453370c48284e7f
MD5 12bd687a99cbb713d5dba149eb2349a0
BLAKE2b-256 b93807c5b999de993ca70f4e7fd198e3463636ba8ee6b757902e4a5d59d2ba1e

See more details on using hashes here.

File details

Details for the file thinc-8.2.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-8.2.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f46f0f58f3bc02beeee5977a991335b845cb15bf1836ee8d8d15b613805c0016
MD5 be59ab4aff1675efdbdb976e0cc486b7
BLAKE2b-256 f2d67516c801c95d942bec20e3a74c01dacb82dab2ef22f181f2557e1766f910

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page