Skip to main content

A refreshing functional take on deep learning, compatible with your favorite libraries

Project description

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries

From the makers of spaCy and Prodigy

Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework.

tests Current Release Version PyPi Version conda Version Python wheels Code style: black Open demo in Colab

🔥 Features

  • Type-check your model definitions with custom types and mypy plugin.
  • Wrap PyTorch, TensorFlow and MXNet models for use in your network.
  • Concise functional-programming approach to model definition, using composition rather than inheritance.
  • Optional custom infix notation via operator overloading.
  • Integrated config system to describe trees of objects and hyperparameters.
  • Choice of extensible backends.
  • Read more →

🚀 Quickstart

Thinc is compatible with Python 3.6+ and runs on Linux, macOS and Windows. The latest releases with binary wheels are available from pip. Before you install Thinc and its dependencies, make sure that your pip, setuptools and wheel are up to date. For the most recent releases, pip 19.3 or newer is recommended.

pip install -U pip setuptools wheel
pip install thinc

See the extended installation docs for details on optional dependencies for different backends and GPU. You might also want to set up static type checking to take advantage of Thinc's type system.

⚠️ If you have installed PyTorch and you are using Python 3.7+, uninstall the package dataclasses with pip uninstall dataclasses, since it may have been installed by PyTorch and is incompatible with Python 3.7+.

📓 Selected examples and notebooks

Also see the /examples directory and usage documentation for more examples. Most examples are Jupyter notebooks – to launch them on Google Colab (with GPU support!) click on the button next to the notebook name.

Notebook Description
intro_to_thinc
Open in Colab
Everything you need to know to get started. Composing and training a model on the MNIST data, using config files, registering custom functions and wrapping PyTorch, TensorFlow and MXNet models.
transformers_tagger_bert
Open in Colab
How to use Thinc, transformers and PyTorch to train a part-of-speech tagger. From model definition and config to the training loop.
pos_tagger_basic_cnn
Open in Colab
Implementing and training a basic CNN for part-of-speech tagging model without external dependencies and using different levels of Thinc's config system.
parallel_training_ray
Open in Colab
How to set up synchronous and asynchronous parameter server training with Thinc and Ray.

View more →

📖 Documentation & usage guides

Documentation Description
Introduction Everything you need to know.
Concept & Design Thinc's conceptual model and how it works.
Defining and using models How to compose models and update state.
Configuration system Thinc's config system and function registry.
Integrating PyTorch, TensorFlow & MXNet Interoperability with machine learning frameworks
Layers API Weights layers, transforms, combinators and wrappers.
Type Checking Type-check your model definitions and more.

🗺 What's where

Module Description
thinc.api User-facing API. All classes and functions should be imported from here.
thinc.types Custom types and dataclasses.
thinc.model The Model class. All Thinc models are an instance (not a subclass) of Model.
thinc.layers The layers. Each layer is implemented in its own module.
thinc.shims Interface for external models implemented in PyTorch, TensorFlow etc.
thinc.loss Functions to calculate losses.
thinc.optimizers Functions to create optimizers. Currently supports "vanilla" SGD, Adam and RAdam.
thinc.schedules Generators for different rates, schedules, decays or series.
thinc.backends Backends for numpy and cupy.
thinc.config Config parsing and validation and function registry system.
thinc.util Utilities and helper functions.

🐍 Development notes

Thinc uses black for auto-formatting, flake8 for linting and mypy for type checking. All code is written compatible with Python 3.6+, with type hints wherever possible. See the type reference for more details on Thinc's custom types.

👷‍♀️ Building Thinc from source

Building Thinc from source requires the full dependencies listed in requirements.txt to be installed. You'll also need a compiler to build the C extensions.

git clone https://github.com/explosion/thinc
cd thinc
python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install -r requirements.txt
pip install --no-build-isolation .

Alternatively, install in editable mode:

pip install -r requirements.txt
pip install --no-build-isolation --editable .

Or by setting PYTHONPATH:

export PYTHONPATH=`pwd`
pip install -r requirements.txt
python setup.py build_ext --inplace

🚦 Running tests

Thinc comes with an extensive test suite. The following should all pass and not report any warnings or errors:

python -m pytest thinc    # test suite
python -m mypy thinc      # type checks
python -m flake8 thinc    # linting

To view test coverage, you can run python -m pytest thinc --cov=thinc. We aim for a 100% test coverage. This doesn't mean that we meticulously write tests for every single line – we ignore blocks that are not relevant or difficult to test and make sure that the tests execute all code paths.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thinc-9.1.1.tar.gz (191.8 kB view details)

Uploaded Source

Built Distributions

thinc-9.1.1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

thinc-9.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

thinc-9.1.1-cp312-cp312-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

thinc-9.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

thinc-9.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

thinc-9.1.1-cp312-cp312-macosx_11_0_arm64.whl (764.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

thinc-9.1.1-cp312-cp312-macosx_10_9_x86_64.whl (827.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

thinc-9.1.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

thinc-9.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

thinc-9.1.1-cp311-cp311-musllinux_1_2_i686.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

thinc-9.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

thinc-9.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

thinc-9.1.1-cp311-cp311-macosx_11_0_arm64.whl (781.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

thinc-9.1.1-cp311-cp311-macosx_10_9_x86_64.whl (849.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

thinc-9.1.1-cp310-cp310-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

thinc-9.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

thinc-9.1.1-cp310-cp310-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

thinc-9.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

thinc-9.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

thinc-9.1.1-cp310-cp310-macosx_11_0_arm64.whl (785.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

thinc-9.1.1-cp310-cp310-macosx_10_9_x86_64.whl (853.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

thinc-9.1.1-cp39-cp39-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

thinc-9.1.1-cp39-cp39-musllinux_1_2_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

thinc-9.1.1-cp39-cp39-musllinux_1_2_i686.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

thinc-9.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

thinc-9.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

thinc-9.1.1-cp39-cp39-macosx_11_0_arm64.whl (789.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

thinc-9.1.1-cp39-cp39-macosx_10_9_x86_64.whl (859.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file thinc-9.1.1.tar.gz.

File metadata

  • Download URL: thinc-9.1.1.tar.gz
  • Upload date:
  • Size: 191.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thinc-9.1.1.tar.gz
Algorithm Hash digest
SHA256 21fae2986d7777a6f050b9046dc9eab11852f1c9a997dcc9032f3ecc22784a4a
MD5 e0a495831348420e031f1c7dd986c22a
BLAKE2b-256 32a192a63536ee9742cfb7b3f4f1c30640f6964739cf33c9313d5c3401e168d6

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: thinc-9.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thinc-9.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d4c30a139df83f076b79b8701ab5544ef49d683696d1a71cc5adcf2d24d73528
MD5 741592590c7e982148c03796f89d0860
BLAKE2b-256 52fe9e735346fe4aaabfd48a7ef846feb3e5e87e99c5bd0dfd0eabacb527b144

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 34fe74c3d6682983fcbff49634f77c353e48fa6fd4b9e0fbd4075cec583523b5
MD5 4eef57b5e37a984dbe548c9d6f056f6b
BLAKE2b-256 d6e0c5953591c58c45a8ad432a90175b63a86ff750a5d4f10e67df533fc90ebc

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3e962f139b3e353d58ef87a861ba7e890bb29655c317bd225b568b97272a4b99
MD5 a0d712ed7b71aee6a93aa4b26aeba7ec
BLAKE2b-256 455c8de8576c0af0caeca2d72421ec392416ff7347da9a009e023c31aceae480

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a540ce68287939d5fcbc25e67c18d0e8b5e9f700e7075c28c2e40aa51496d54f
MD5 a642bbf2dac476a4084d4d41dcb36426
BLAKE2b-256 45d5eda88b213ec9906f31eb965a090167dfe36b46eb8e4e2131ba42ae3e684f

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2b47bd3af0f68f52393a6ae76d28718260533fcf9f5e010a94a302e67611841c
MD5 aafbff39e645a3c1ff149fc3919a60f7
BLAKE2b-256 d95083a75906d6ed285e1b2eb2d1cdafac78e9fc7fb6de4f35ea5d0ffd699de6

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e77f0877c567103601e58178bb0d24d227a081380e25ed8ab4d2f2f7438d6d6a
MD5 b29bca50243d24006d541e8ad03b9994
BLAKE2b-256 b8c74300838b6314ea727d789313e40bbef2cf307c9bab45a2cee2b5bda2cc44

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1f9844a881f5892a23e23f0a112be3a6b0feedd4ac928f96ce32c6784fcaeb8
MD5 10a613e949d28960d99d3cf9beedc7f2
BLAKE2b-256 9c0e9f564bcd7b6498dfb3b11019cba4f8e86419043248e10d20640ceac16e2c

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: thinc-9.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thinc-9.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c7aef2cf91f53bebe2be52ff46f7b698da32e04e2ee53929aab6b1ff1af8157d
MD5 2c50394bab82ab42698dc77de17123c1
BLAKE2b-256 363e369ea52d86af234f35a7ce0ff76c693d245c5a37e2e466a9180611d5488d

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9c88e10e75607869425ed11d29c9a0754c5a8ed44048ea7bda00fb49a2d287a0
MD5 b070ecfa57a26e5b7faace9be784c6ca
BLAKE2b-256 54489c61160a4869dbaf4fb4f359cf23f21045ba1bb22626b6bfb511ada80c44

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b03c7f88363bbbcef2a36b8da261c1ad69972ffe2f6c2aaf1accef5c2d749d1a
MD5 934eb19a67bd64f42d0e6a283f72c111
BLAKE2b-256 391ec2ddff11c470acc922cf4aeb25c0532351df1a34307163cf456aa97d55ed

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45379a56d569f0a56a90d15fded5e46c8b1abb0a1b2617450194f06a55abf827
MD5 9cde30452b389f950109547494f639e9
BLAKE2b-256 9bc626e361be492ea8e98f687fd9b4536677211f837687f693d595766422db13

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf25ac6bf36bc8f46b7a1234a2be74469fe54fa6d1421fbb9deb968614ab03a6
MD5 08a3e2df86e728e3210451510cdf906f
BLAKE2b-256 c58aee17b44923d624aa4b5c7e1c3ba6f515d3c873c92ca4b7c340645c632720

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19928387bf7e80e2f808fa02c268b4e593d118f4722b3c1df1d7f53ef79d410c
MD5 5198972c44adb4d0ef2e4ae1070a636e
BLAKE2b-256 b393d0ac7fe8ff682b95ee90d0bc03a87bf8e47b319c0fb23ae6b015c3a8e7ea

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc24dadedfe2eeaa1c6a4a1b08d30a4fa81185527dfa5fdf602e334b23bc0911
MD5 bd2e6cc42c21e22ff234040f04cbb8be
BLAKE2b-256 402b53b77cc24348be7d0993c2aea0f7feab9a87156381f1578560add6c50331

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: thinc-9.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thinc-9.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b3f6dceb9605f5aaa2b57e16b336866e8bed235fe1224612e51657c16e815480
MD5 6a03be92fae3e468510a609e6dd4cf35
BLAKE2b-256 76d3386de0dbb736275dbb5d2221e9054d11cce417cf926131beebddfd8056b9

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 754fb8c6d3f9f7ba9503a8969f007d3a171d49989aca5a435511f06c5e1171a0
MD5 c94d0c7017717aa46e68b43fa2323814
BLAKE2b-256 6ab9a84fb5224a13c4f6936139114ba8fe73e6e03167f9a87eacd4d4ee1a5232

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7bd43399c9f3b6f5ec2e429a96cb7e2320c7f8db4a358715ba177b5a1325f0c7
MD5 1ba7bd15cc6a6b1659674cb163b1b0a3
BLAKE2b-256 065f2f5cd5592bf59dc421e8d2b749a342cba0c0c2ea8a7aa50ca74b035f8c90

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fa86a66854851ff51f7f5d32afe4c284582fc840009f11b9070f6aaf9455006
MD5 743c93749f15ab8734e679dc83ee7434
BLAKE2b-256 d8d103abf631d7925c9c9888dd0d3321fb0a945d560fddb53817287041f0265c

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7264dedc732541fd2783055072580b0eb06aecd9c102de639f2f53b6078127d1
MD5 02c2e55d8e3ae13afda3cb4109bc7210
BLAKE2b-256 0529c2bef48513ab469fb7023f40b02e13d639de0e5b4beafeb828745aad5d4e

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 082d3804a3dc5091bc3c980f338b37d4d848454f018b42be7dec7c042847c3c4
MD5 808bb10171b129c01a53a20d50566667
BLAKE2b-256 304f5d463760011154bf595aedb6adabf6c7794471d2834b65d66adf585025aa

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c4a19eab36f246f49c3fd662a4442e07839a3f93a34b48867c9857587f9c518
MD5 b16116d90e046116652438b5495b5e1d
BLAKE2b-256 28a04532a0b9c4947ede46a6d45bee040fac6db7bc077c5ffd9629ae50c511e0

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: thinc-9.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for thinc-9.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 49f316e599d71a91d6b0d8737015c7cc04cd8a10ca0ec412abc66212a4011dd4
MD5 9bda9bea4a102d6403f7036c8f43ef30
BLAKE2b-256 f7ebcf4caaab6783425f0cdc64aeeb1a1c3d9b5d886fed8ce7f0181b20ead176

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d3f16766f25cdf11fb136688d52df5d4698c30532cf42812192186b476833a33
MD5 020efdf870b70d1a415b7e15b00acc79
BLAKE2b-256 7d682e0378c0b427c282e5b62b8b7d6dfe3e5cdb18abe8dead5f33f40feba550

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1b680e45eea8183984a717825b5f7594430674d019b66e4f959f6aba54d27425
MD5 2582a6a4bd5826a22651dcbf18894d3a
BLAKE2b-256 51d7b84d116f736df0f76e69e376af5c138ad637ee2bfe536164360057687ad0

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a458c2ce71d74615acf491b717342821133eca4a36d172a8c048b46a92566bd
MD5 59c3b08809b361cd502135b3ecd8db3b
BLAKE2b-256 98165f3a5189d8f9e2c4828589dbdaa2c2f1b0a6ad3f9861dd47958aa6715364

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09c15bae71d5ee215c7b5240eee859a16713de47e9250879a207f043e0c299b3
MD5 a3e358a3a1f89714153d611c5389741f
BLAKE2b-256 d84f6fa24c9cfc8458c6a79ed35b342ae8c916121fce7e46683fb3d7091b51ee

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d305f06b1dedd40ee942f629c63cd36b299e4368b9b1223f8952366e6b3ed3a
MD5 8f9ed8b1e4488098d3a16144f455b10b
BLAKE2b-256 987fca926b9e8d264cbc33e8104860a2ada64a0dbbd179e7aa298617f0e210fe

See more details on using hashes here.

File details

Details for the file thinc-9.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for thinc-9.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ab269b1646c5cc058055d4941e343aa52b293225c31775a94373e02bc5c85a1
MD5 daa9ba0219ad1c11b337c0510b88bbec
BLAKE2b-256 2cfaa1154c3e562509b289bbc29f26ed190e719e98ef61fb4afa00886263f8d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page