Skip to main content

Extracting image features from state-of-the-art neural networks for Computer Vision made easy

Project description

Model collection

Features can be extraced for all models in torchvision, each of the CORnet versions and both CLIP variants (clip-ViT and clip-RN). For the correct abbrevations of torchvision models have a look here. For the correct abbrevations of CORnet models look here. To separate the string cornet from its variant (e.g., s, z) use a hyphen instead of an underscore (e.g., cornet-s, cornet-z).

Examples: alexnet, resnet50, resnet101, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn, cornet-s, clip-ViT

Environment Setup

Make sure you have the latest Python version (>= 3.7) and install PyTorch 1.7.1. Note that PyTorch 1.7.1 requires CUDA 10.2 or above, if you want to extract features on a GPU. However, the code runs already pretty fast on a strong CPU (Intel i7 or i9). Run the following pip command in your terminal.

$ pip install thingsvision

You have to download files from the parent repository (i.e., this repo) and move them into the Anaconda site-package directory on your machine to leverage CLIP. Simply download the shell script get_files.sh from this repo and execute it as follows (the shell script will do file downloading and moving for you):

$ wget https://raw.githubusercontent.com/ViCCo-Group/THINGSvision/master/get_files.sh (Linux)
$ curl -O https://raw.githubusercontent.com/ViCCo-Group/THINGSvision/master/get_files.sh (macOS)
$ bash get_files.sh

Execute the following lines to have the latest PyTorch and CUDA versions available (not necessary, but perhaps desirable):

$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0

Replace cudatoolkit=11.0 above with the appropriate CUDA version on your machine (e.g., 10.2) or cpuonly when installing on a machine without a GPU.

Extract features at specific layer of a state-of-the-art torchvision, CORnet or CLIP model

Example call for AlexNet:

import torch
import thingsvision.vision as vision

model_name = 'alexnet'

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
module_name = vision.show_model(model, model_name)

AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

#Enter part of the model for which you would like to extract features:

(e.g., "features.10")

dl = vision.load_dl('./images/', batch_size=64, things=True, transforms=transforms)
features, targets = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=True, device=device)
features = vision.center_features(features)

vision.save_features(features, f'./{model_name}/{module_name}/activations', '.npy')
vision.save_targets(targets, f'./{model_name}/{module_name}/targets', '.npy')

Example call for CLIP:

import torch
import thingsvision.vision as vision

model_name = 'clip-ViT'
module_name = 'visual'

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
dl = vision.load_dl('./IMAGE_FOLDER/', batch_size=64, transforms=transforms)
features, targets = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=False, device=device, clip=True)

features = vision.center_features(features)
features = vision.normalize_features(features)

vision.save_features(features, f'./{model_name}/{module_name}/activations', '.npy')
vision.save_targets(targets, f'./{model_name}/{module_name}/targets', '.npy')

Example call for CORnet

import torch
import thingsvision.vision as vision

model_name = 'cornet-s'

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
module_name = vision.show_model(model, model_name)

Sequential(
  (V1): Sequential(
    (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (nonlin1): ReLU(inplace=True)
    (pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (norm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (nonlin2): ReLU(inplace=True)
    (output): Identity()
  )
  (V2): CORblock_S(
    (conv_input): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (skip): Conv2d(128, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (norm_skip): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv1): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin1): ReLU(inplace=True)
    (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (nonlin2): ReLU(inplace=True)
    (conv3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin3): ReLU(inplace=True)
    (output): Identity()
    (norm1_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm1_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (V4): CORblock_S(
    (conv_input): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (skip): Conv2d(256, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (norm_skip): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv1): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin1): ReLU(inplace=True)
    (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (nonlin2): ReLU(inplace=True)
    (conv3): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin3): ReLU(inplace=True)
    (output): Identity()
    (norm1_0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm1_1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm1_2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm1_3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (IT): CORblock_S(
    (conv_input): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (skip): Conv2d(512, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
    (norm_skip): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (conv1): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin1): ReLU(inplace=True)
    (conv2): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (nonlin2): ReLU(inplace=True)
    (conv3): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (nonlin3): ReLU(inplace=True)
    (output): Identity()
    (norm1_0): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_0): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm1_1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm2_1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (norm3_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (decoder): Sequential(
    (avgpool): AdaptiveAvgPool2d(output_size=1)
    (flatten): Flatten()
    (linear): Linear(in_features=512, out_features=1000, bias=True)
    (output): Identity()
  )
)

#Enter part of the model for which you would like to extract features:

(e.g., "decoder.flatten")

dl = vision.load_dl('./IMAGE_FOLDER/', batch_size=64, transforms=transforms)
features, targets = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=False, device=device)

features = vision.center_features(features)
features = vision.normalize_features(features)

vision.save_features(features, f'./{model_name}/{module_name}/activations', '.npy')
vision.save_targets(targets, f'./{model_name}/{module_name}/targets', '.npy')

IMPORTANT NOTES:

  1. Image data will automatically be converted into a ready-to-use dataset class, and subsequently wrapped with a PyTorch mini-batch dataloader to make neural activation extraction more efficient.

  2. If you happen to use the THINGS image database, make sure to correctly unzip all zip files (sorted from A-Z), and have all object directories stored in the parent directory ./images/ (e.g., ./images/object_xy/) as well as the things_concept.tsv file stored in the ./data/ folder. bash get_files.sh does the latter for you. Images, however, must be downloaded from the THINGS database.

  3. In case you would like to use your own images or a different dataset make sure that all images are .jpg, .png, or .PNG files. Image files must be saved either in in_path (e.g., ./images/image_xy.jpg), or in subfolders of in_path (e.g., ./images/class_xy/image_xy.jpg) in case images correspond to different classes where n images are stored for each of the k classes (such as in ImageNet or THINGS). You don't need to tell the script in which of the two ways your images are stored. You just need to pass in_path. However, images have to be stored in one way or the other.

  4. Features can be extracted at every layer for all torchvision, CORnet and CLIP models.

  5. If you happen to be interested in an ensemble of feature maps, as introduced in this recent COLING 2020 paper, you can simply extract an ensemble of conv or max-pool layers. The ensemble can additionally be concatenated with the activations of the penultimate layer, and subsequently transformed into a lower-dimensional space with PCA to reduce noise and only keep those dimensions that account for most of the variance.

  6. The script automatically extracts features for the specified model and layer and stores them together with the targets in out_path (see above).

  7. Since 4-way tensors cannot be easily saved to disk, they must be sliced into different parts to be efficiently stored as a matrix. The helper function tensor2slices will slice any 4-way tensor (activations extraced from features.##) automatically for you, and will save it as a matrix in a file called activations.txt. To merge the slices back into the original shape (i.e., 4-way tensor) simply call slices2tensor which takes out_path and file_name (see above) as input arguments (e.g., tensor = slices2tensor(PATH, file)).

  8. If you happen to extract hidden unit activations for many images, it is possible to run into MemoryErrors. To circumvent such problems, a helper function called split_activations will split the activation matrix into several batches, and stores them in separate files. For now, the split parameter is set to 10. Hence, the function will split the activation matrix into 10 files. This parameter can, however, easily be modified in case you need more (or fewer) splits. To merge the separate activation batches back into a single activation matrix, just call merge_activations when loading the activations (e.g., activations = merge_activations(PATH)).

OpenAI's CLIP models (read carefully)

CLIP

[Blog] [Paper] [Model Card] [Colab]

CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original ResNet50 on ImageNet “zero-shot” without using any of the original 1.28M labeled examples, overcoming several major challenges in computer vision.

API

The CLIP module clip provides the following methods:

clip.available_models()

Returns the name(s) of the available CLIP models.

clip.load(name, device=..., jit=True)

Returns the model and the TorchVision transform needed by the model, specified by the model name returned by clip.available_models(). It will download the model as necessary. The device to run the model can be optionally specified, and the default is to use the first CUDA device if there is any, otherwise the CPU.

When jit is False, a non-JIT version of the model will be loaded.

clip.tokenize(text: Union[str, List[str]], context_length=77)

Returns a LongTensor containing tokenized sequences of given text input(s). This can be used as the input to the model


The model returned by clip.load() supports the following methods:

model.encode_image(image: Tensor)

Given a batch of images, returns the image features encoded by the vision portion of the CLIP model.

model.encode_text(text: Tensor)

Given a batch of text tokens, returns the text features encoded by the language portion of the CLIP model.

model(image: Tensor, text: Tensor)

Given a batch of images and a batch of text tokens, returns two Tensors, containing the logit scores corresponding to each image and text input. The values are cosine similarities between the corresponding image and text features, times 100.

Project details


Release history Release notifications | RSS feed

This version

0.6.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thingsvision-0.6.1.tar.gz (31.5 kB view details)

Uploaded Source

Built Distribution

thingsvision-0.6.1-py3-none-any.whl (31.4 kB view details)

Uploaded Python 3

File details

Details for the file thingsvision-0.6.1.tar.gz.

File metadata

  • Download URL: thingsvision-0.6.1.tar.gz
  • Upload date:
  • Size: 31.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for thingsvision-0.6.1.tar.gz
Algorithm Hash digest
SHA256 88249c5bb170a7f13cbf432c567463545d2b6c840e55598f9f3caedf70d2d7cc
MD5 d58438bec2763603b3119e6f31b499f8
BLAKE2b-256 ef71be8ce49e68e79c4e137d46793343cef59b93da9adbd4c333d3f4bc6cfaa1

See more details on using hashes here.

Provenance

File details

Details for the file thingsvision-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: thingsvision-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 31.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for thingsvision-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 710093db7bcd16b3f9930a9c4cd4d6933a1ad9a54eef8b8e9b3df18ad82cd578
MD5 e3ac74c0d372b2d054a61456239020c9
BLAKE2b-256 a90178b72a335b9b7b947603e2824e328a33c3255b83e9b999d7a733cd53dd52

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page