Extracting image features from state-of-the-art neural networks for Computer Vision made easy
Project description
Model collection
Features can be extraced for all models in torchvision, each of the CORnet versions and both CLIP variants (clip-ViT
and clip-RN
). For the correct abbrevations of torchvision models have a look here. For the correct abbrevations of CORnet models look here. To separate the string cornet
from its variant (e.g., s
, z
) use a hyphen instead of an underscore (e.g., cornet-s
, cornet-z
).
Examples: alexnet
, resnet50
, resnet101
, vgg13
, vgg13_bn
, vgg16
, vgg16_bn
, vgg19
, vgg19_bn
, cornet-s
, clip-ViT
Environment Setup
Make sure you have the latest Python version (>= 3.7) and install PyTorch 1.7.1. Note that PyTorch 1.7.1 requires CUDA 10.2 or above, if you want to extract network activations on a GPU. However, the code runs already pretty fast on a strong CPU (Intel i7 or i9). Run the following pip
command in your terminal.
$ pip install thingsvision
You have to download files from the parent repository (i.e., this repo), if you want to extract network activations for THINGS. Simply download the shell script get_files.sh
from this repo and execute it as follows (the shell script will do file downloading and moving for you):
$ wget https://raw.githubusercontent.com/ViCCo-Group/THINGSvision/master/get_files.sh (Linux)
$ curl -O https://raw.githubusercontent.com/ViCCo-Group/THINGSvision/master/get_files.sh (macOS)
$ bash get_files.sh
Execute the following lines to have the latest PyTorch
and CUDA
versions available (not necessary, but perhaps desirable):
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
Replace cudatoolkit=11.0
above with the appropriate CUDA version on your machine (e.g., 10.2) or cpuonly
when installing on a machine without a GPU.
Extract features at specific layer of a state-of-the-art torchvision
, CORnet
or CLIP
model
Example call for AlexNet:
import torch
import thingsvision.vision as vision
model_name = 'alexnet'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
module_name = vision.show_model(model, model_name)
AlexNet(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): ReLU(inplace=True)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): ReLU(inplace=True)
(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(inplace=True)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(
(0): Dropout(p=0.5, inplace=False)
(1): Linear(in_features=9216, out_features=4096, bias=True)
(2): ReLU(inplace=True)
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=4096, out_features=4096, bias=True)
(5): ReLU(inplace=True)
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
)
#Enter part of the model for which you would like to extract features:
(e.g., "features.10")
dl = vision.load_dl(root='./images/', out_path=f'./{model_name}/{module_name}/features', batch_size=64, transforms=transforms)
features, targets, predictions = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=True, device=device, return_predictions=True)
vision.save_features(features, f'./{model_name}/{module_name}/features', '.npy')
Example call for CLIP:
import torch
import thingsvision.vision as vision
model_name = 'clip-ViT'
module_name = 'visual'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
dl = vision.load_dl(root='./images/', out_path=f'./{model_name}/{module_name}/features', batch_size=64, transforms=transforms)
features, targets = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=False, device=device, clip=True, return_predictions=False)
features = vision.center_features(features)
vision.save_features(features, f'./{model_name}/{module_name}/features', '.npy')
vision.save_targets(targets, f'./{model_name}/{module_name}/targets', '.npy')
Example call for CORnet
import torch
import thingsvision.vision as vision
model_name = 'cornet-s'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, transforms = vision.load_model(model_name, pretrained=True, model_path=None, device=device)
module_name = vision.show_model(model, model_name)
Sequential(
(V1): Sequential(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(nonlin1): ReLU(inplace=True)
(pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(norm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(nonlin2): ReLU(inplace=True)
(output): Identity()
)
(V2): CORblock_S(
(conv_input): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(skip): Conv2d(128, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(norm_skip): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin1): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(nonlin2): ReLU(inplace=True)
(conv3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin3): ReLU(inplace=True)
(output): Identity()
(norm1_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm1_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(V4): CORblock_S(
(conv_input): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(skip): Conv2d(256, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(norm_skip): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin1): ReLU(inplace=True)
(conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(nonlin2): ReLU(inplace=True)
(conv3): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin3): ReLU(inplace=True)
(output): Identity()
(norm1_0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm1_1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm1_2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm1_3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(IT): CORblock_S(
(conv_input): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(skip): Conv2d(512, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(norm_skip): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin1): ReLU(inplace=True)
(conv2): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(nonlin2): ReLU(inplace=True)
(conv3): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(nonlin3): ReLU(inplace=True)
(output): Identity()
(norm1_0): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_0): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm1_1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm2_1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(norm3_1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(decoder): Sequential(
(avgpool): AdaptiveAvgPool2d(output_size=1)
(flatten): Flatten()
(linear): Linear(in_features=512, out_features=1000, bias=True)
(output): Identity()
)
)
#Enter part of the model for which you would like to extract features:
(e.g., "decoder.flatten")
dl = vision.load_dl(root='./images/', out_path=f'./{model_name}/{module_name}/features', batch_size=64, transforms=transforms)
features, targets = vision.extract_features(model, dl, module_name, batch_size=64, flatten_acts=False, device=device, return_predictions=False)
features = vision.center_features(features)
features = vision.normalize_features(features)
vision.save_features(features, f'./{model_name}/{module_name}/features', '.npy')
Predictions and ImageNet classes
Do you want to get model predictions alongside activations for free, and subsequently convert them into ImageNet
classes? Simply set the return_predictions
argument to True
and use the get_imagenet_classes
helper (the function works for both synset
and class
files). Note that this is, unfortunately, not (yet) possible for CLIP
models due to their multi-modality and different training objectives.
features, targets, predictions = vision.extract_features(model, dl, module_name, batch_size, flatten_acts=False, device=device, return_predictions=True)
imagenet_classes = vision.get_imagenet_classes(PATH='./data/imagenet1000_classes.txt', predictions=predictions)
Model comparison
To compare object representations extracted from specifid models and layers against each other, for a List[str]
of models and layers a user can perform the following operation,
clip_list = [n.startswith('clip') for n in model_names]
correlations = vision.compare_models(
root=root,
out_path=out_path,
model_names=model_names,
module_names=module_names,
pretrained=True,
batch_size=batch_size,
flatten_acts=True,
clip=clip_list,
save_features=True,
dissimilarity='correlation',
correlation='pearson',
)
The function returns a correlation matrix in the form of a Pandas
dataframe whose rows and columns correspond to the names of the models in model_names
. The cell elements are the correlation coefficients for each model combination. The dataframe can subsequenly be converted into a heatmap with matplotlib
or seaborn
. We will release a clear and concise documentary as soon as possible. Until then, we recommend to look at Section 3.2.3 in the bioRxiv preprint.
IMPORTANT NOTES:
-
Image data will automatically be converted into a ready-to-use dataset class, and subsequently wrapped with a
PyTorch
mini-batch dataloader to make neural activation extraction more efficient. -
If you happen to use the THINGS image database, make sure to correctly
unzip
all zip files (sorted from A-Z), and have allobject
directories stored in the parent directory./images/
(e.g.,./images/object_xy/
) as well as thethings_concept.tsv
file stored in the./data/
folder.bash get_files.sh
does the latter for you. Images, however, must be downloaded from the THINGS database. -
Features can be extracted at every layer for all
torchvision
,CORnet
andCLIP
models. -
If you happen to be interested in an ensemble of
feature maps
, as introduced in this recent COLING 2020 paper, you can simply extract an ensemble ofconv
ormax-pool
layers. The ensemble can additionally be concatenated with the activations of the penultimate layer, and subsequently transformed into a lower-dimensional space withPCA
to reduce noise and only keep those dimensions that account for most of the variance. -
The script automatically extracts features for the specified
model
andlayer
and stores them together with thetargets
inout_path
(see above). -
Since 4-way tensors cannot be easily saved to disk, they must be sliced into different parts to be efficiently stored as a matrix. The helper function
tensor2slices
will slice any 4-way tensor (activations extraced fromfeatures.##
) automatically for you, and will save it as a matrix in a file calledactivations.txt
. To merge the slices back into the original shape (i.e., 4-way tensor) simply callslices2tensor
which takesout_path
andfile_name
(see above) as input arguments (e.g.,tensor = slices2tensor(PATH, file)
). -
If you happen to extract hidden unit activations for many images, it is possible to run into
MemoryErrors
. To circumvent such problems, a helper function calledsplit_activations
will split the activation matrix into several batches, and stores them in separate files. For now, the split parameter is set to10
. Hence, the function will split the activation matrix into10
files. This parameter can, however, easily be modified in case you need more (or fewer) splits. To merge the separate activation batches back into a single activation matrix, just callmerge_activations
when loading the activations (e.g.,activations = merge_activations(PATH)
).
OpenAI's CLIP models
CLIP
[Blog] [Paper] [Model Card] [Colab]
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original ResNet50 on ImageNet “zero-shot” without using any of the original 1.28M labeled examples, overcoming several major challenges in computer vision.
Citation
If you use this GitHub repository (or any modules associated with it), we would grately appreciate to cite our preprint as follows:
@article{Muttenthaler_2021,
author = {Muttenthaler, Lukas and Hebart, Martin N.},
title = {THINGSvision: a Python toolbox for streamlining the extraction of activations from deep neural networks},
elocation-id = {2021.03.11.434979},
year = {2021},
doi = {10.1101/2021.03.11.434979},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2021/03/12/2021.03.11.434979},
eprint = {https://www.biorxiv.org/content/early/2021/03/12/2021.03.11.434979.full.pdf},
journal = {bioRxiv}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file thingsvision-0.7.5.tar.gz
.
File metadata
- Download URL: thingsvision-0.7.5.tar.gz
- Upload date:
- Size: 32.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26e3bbeb86a4cea8365b595588ba1852432739283923da8014046ea90b04b2c2 |
|
MD5 | b2c3ab85ea2c88afb7fb521c98057de5 |
|
BLAKE2b-256 | 88ce910739bf25576c39e2661b932d77a95f6b5fe5002a26b9bc94912819cd98 |
Provenance
File details
Details for the file thingsvision-0.7.5-py3-none-any.whl
.
File metadata
- Download URL: thingsvision-0.7.5-py3-none-any.whl
- Upload date:
- Size: 32.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43e108656c70ead286640d6f7ddc7bb874957cd5fc8fa2ef41b2af1a178497b6 |
|
MD5 | d9bb3136670b0bddd7c2ff6b9eb9327f |
|
BLAKE2b-256 | 2a57d147bf8c16dfa063ad99ff760b3ad660cf8b74b5080ed11e39f909046c10 |