Skip to main content

37AUSTEN's Proprietary Algorithms Library.

Project description

This is a library that provides access to 37AUSTEN"s proprietary algorithms.

Installation


pip install thirtysevena 

Full API Documentation

The full API documentation can be found via https://www.37austen.com/api/documentation

Usage:

The functions in this library are:

  1. Login
  2. Token Refresh
  3. Future Movement Algorithm
  4. Future Movement Group Algorithm
  5. Future Movement FX Algorithm
  6. Future Movement Token Algorithm
  7. Correlation Algorithm

The accepted licence types are:

  1. Trial - t
  2. Single User - s
  3. Enterprise - e

Token Refresh


import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.token_refresh()

Future Movement Algorithm Example

import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.login()

data = {

"Metadata" : { "Label" : "Gamestop", "ID" : "Equity", "Timeframe" : "Daily" },

"P1" : { "Date" : "2020-12-01 00:00:00", "Open" : 17.11, "High" : 17.4, "Low" : 15.76, "Close" : 15.8 },

"P2" : { "Date" : "2020-12-02 00:00:00", "Open" : 15.7, "High" : 16.68, "Low" : 15.38, "Close" : 16.58 },

"P3" : { "Date" : "2020-12-03 00:00:00", "Open" : 16.48, "High" : 16.64, "Low" : 15.87, "Close" : 16.12 },

"P4" : { "Date" : "2020-12-04 00:00:00", "Open" : 16.3, "High" : 17.29, "Low" : 16.26, "Close" : 16.9 },

"P5" : { "Date" : "2020-12-07 00:00:00", "Open" : 17.0, "High" : 17.5, "Low" : 16.22, "Close" : 16.35 },

"P6" : { "Date" : "2020-12-08 00:00:00", "Open" : 16.37, "High" : 17.21, "Low" : 15.93, "Close" : 16.94 },

"P7" : { "Date" : "2020-12-09 00:00:00", "Open" : 13.92, "High" : 14.73, "Low" : 13.225, "Close" : 13.66 },

"P8" : { "Date" : "2020-12-10 00:00:00", "Open" : 13.12, "High" : 14.41, "Low" : 13.05, "Close" : 14.12 },

"P9" : { "Date" : "2020-12-11 00:00:00", "Open" : 13.91, "High" : 14.0, "Low" : 13.02, "Close" : 13.31 },

"P10" : { "Date" : "2020-12-14 00:00:00", "Open" : 13.34, "High" : 13.4335, "Low" : 12.14, "Close" : 12.72 },

"P11" : { "Date" : "2020-12-15 00:00:00", "Open" : 13.0 }

}

response = client.future_movement(data)

Future Movement Group Algorithm Example

import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.login()

data = {

"Metadata" : {"Label" : "Hypothetical Asset", "ID" : "Index", "Timeframe" : "3 Days" },

"P1" : { "Date" : "2020-02-03 00:00:00", "Open" : 26189.61, "High" : 26512.58, "Low" : 26145.59, "Close" : 26356.98 },

"P2" : { "Date" : "2020-02-04 00:00:00", "Open" : 26491.66, "High" : 26730.26, "Low" : 26491.66, "Close" : 26675.98 },

"P3" : { "Date" : "2020-02-05 00:00:00", "Open" : 26869.32, "High" : 26926.12, "Low" : 26641.92, "Close" : 26786.74 },

"P4" : { "Date" : "2020-02-06 00:00:00", "Open" : 27174.53, "High" : 27608.22, "Low" : 27029.49, "Close" : 27493.7 },

"P5" : { "Date" : "2020-02-07 00:00:00", "Open" : 27356.28, "High" : 27410.58, "Low" : 27224.12, "Close" : 27404.27 },

"P6" : { "Date" : "2020-02-10 00:00:00", "Open" : 27092.15, "High" : 27314.64, "Low" : 27044.88, "Close" : 27241.34 },

"P7" : { "Date" : "2020-02-11 00:00:00", "Open" : 27514.25, "High" : 27674.81, "Low" : 27436.99, "Close" : 27583.88 },

"P8" : { "Date" : "2020-02-12 00:00:00", "Open" : 27717.22, "High" : 27892.48, "Low" : 27614.83, "Close" : 27823.66 },

"P9" : { "Date" : "2020-02-13 00:00:00", "Open" : 27953.65, "High" : 27953.65, "Low" : 27695.6, "Close" : 27730.0 },

"P10" : { "Date" : "2020-02-14 00:00:00", "Open" : 27698.56, "High" : 27960.66, "Low" : 27695.59, "Close" : 27815.6 },

"P11" : { "Date" : "2020-02-17 00:00:00", "Open" : 27766.71, "High" : 28055.58, "Low" : 27766.71, "Close" : 27959.6 },

"P12" : { "Date" : "2020-02-18 00:00:00", "Open" : 27766.5, "High" : 27771.3, "Low" : 27496.25, "Close" : 27530.2 },

"P13" : { "Date" : "2020-02-19 00:00:00", "Open" : 27486.46, "High" : 27697.46, "Low" : 27448.6, "Close" : 27655.81 },

"P14" : { "Date" : "2020-02-20 00:00:00", "Open" : 27767.28, "High" : 27767.28, "Low" : 27383.13, "Close" : 27609.16 },

"P15" : { "Date" : "2020-02-21 00:00:00", "Open" : 27450.46, "High" : 27484.53, "Low" : 27264.78, "Close" : 27308.81 },

"P16" : { "Date" : "2020-02-24 00:00:00", "Open" : 27105.35, "High" : 27105.35, "Low" : 26813.22, "Close" : 26820.88 },

"P17" : { "Date" : "2020-02-25 00:00:00", "Open" : 26722.39, "High" : 26914.05, "Low" : 26667.04, "Close" : 26893.23 },

"P18" : { "Date" : "2020-02-26 00:00:00", "Open" : 26479.9, "High" : 26776.06, "Low" : 26479.9, "Close" : 26696.49 },

"P19" : { "Date" : "2020-02-27 00:00:00", "Open" : 26529.17, "High" : 26849.57, "Low" : 26419.97, "Close" : 26778.62 },

"P20" : { "Date" : "2020-02-28 00:00:00", "Open" : 26249.06, "High" : 26313.55, "Low" : 25989.41, "Close" : 26129.93 },

"P21" : { "Date" : "2020-03-02 00:00:00", "Open" : 26077.73, "High" : 26375.91, "Low" : 26077.73, "Close" : 26291.68 },

"P22" : { "Date" : "2020-03-03 00:00:00", "Open" : 26419.13, "High" : 26527.75, "Low" : 26233.39, "Close" : 26284.82 },

"P23" : { "Date" : "2020-03-04 00:00:00", "Open" : 26321.56, "High" : 26372.48, "Low" : 26038.39, "Close" : 26222.07 },

"P24" : { "Date" : "2020-03-05 00:00:00", "Open" : 26348.16, "High" : 26805.58, "Low" : 26315.36, "Close" : 26767.87 },

"P25" : { "Date" : "2020-03-06 00:00:00", "Open" : 26397.78, "High" : 26408.8, "Low" : 26084.23, "Close" : 26146.67 },

"P26" : { "Date" : "2020-03-09 00:00:00", "Open" : 25134.02, "High" : 25321.28, "Low" : 24948.38, "Close" : 25040.46 },

"P27" : { "Date" : "2020-03-10 00:00:00", "Open" : 25285.68, "High" : 25578.61, "Low" : 24978.97, "Close" : 25392.51 },

"P28" : { "Date" : "2020-03-11 00:00:00", "Open" : 25459.96, "High" : 25493.23, "Low" : 25140.38, "Close" : 25231.61 },

"P29" : { "Date" : "2020-03-12 00:00:00", "Open" : 24657.67, "High" : 24657.67, "Low" : 24117.94, "Close" : 24309.07 },

"P30" : { "Date" : "2020-03-13 00:00:00", "Open" : 22519.32, "High" : 24184.48, "Low" : 22519.32, "Close" : 24032.91 },

"P31" : { "Date" : "2020-03-16 00:00:00", "Open" : 23317.81 }

}

response = client.future_movement_group(data)

Future Movement FX Algorithm Example

import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.login()

data = {

"Metadata" : {"Label" : "GBP/EUR", "ID" : "FX", "Timeframe" : "Daily" },

"P1" : { "Date" : "2021-02-08 00:00:00", "Open" : 1.1401, "High" : 1.1412, "Low" : 1.1373, "Close" : 1.1401 },

"P2" : { "Date" : "2021-02-09 00:00:00", "Open" : 1.1403, "High" : 1.1411, "Low" : 1.1366, "Close" : 1.1404 },

"P3" : { "Date" : "2021-02-10 00:00:00", "Open" : 1.1402, "High" : 1.1425, "Low" : 1.1387, "Close" : 1.14 },

"P4" : { "Date" : "2021-02-11 00:00:00", "Open" : 1.1411, "High" : 1.1424, "Low" : 1.1381, "Close" : 1.1411 },

"P5" : { "Date" : "2021-02-12 00:00:00", "Open" : 1.1385, "High" : 1.1434, "Low" : 1.1372, "Close" : 1.1383 },

"P6" : { "Date" : "2021-02-15 00:00:00", "Open" : 1.1442, "High" : 1.147, "Low" : 1.1439, "Close" : 1.1441 },

"P7" : { "Date" : "2021-02-16 00:00:00", "Open" : 1.1467, "High" : 1.1495, "Low" : 1.1441, "Close" : 1.1464 },

"P8" : { "Date" : "2021-02-17 00:00:00", "Open" : 1.1486, "High" : 1.1519, "Low" : 1.1467, "Close" : 1.1484 },

"P9" : { "Date" : "2021-02-18 00:00:00", "Open" : 1.151, "High" : 1.1569, "Low" : 1.1491, "Close" : 1.151 },

"P10" : { "Date" : "2021-02-19 00:00:00", "Open" : 1.1551, "High" : 1.1568, "Low" : 1.1523, "Close" : 1.1551 },

"P11" : { "Date" : "2021-02-22 00:00:00", "Open" : 1.1569 }

}

response = client.future_movement_fx(data)

Future Movement Token Algorithm Example

import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.login()

data = {

"Metadata" : {"Label" : "Example Token", "ID" : "Crypto Token", "Timeframe" : "Daily" },

"P1" : { "Date" : "2021-07-26 00:00:00", "Open " : 1.174122334, "High" : 1.174398184, "Low" : 1.174122334, "Close" : 1.174260259 },

"P2" : { "Date" : "2021-07-27 00:00:00", "Open " : 1.174260259, "High" : 1.174260259, "Low" : 1.174122334, "Close" : 1.174122334 },

"P3" : { "Date" : "2021-07-28 00:00:00", "Open " : 1.174122334, "High" : 1.174398184, "Low" : 1.174122334, "Close" : 1.174122334 },

"P4" : { "Date" : "2021-07-29 00:00:00", "Open " : 1.174398184, "High" : 1.174398184, "Low" : 1.173984528, "Close" : 1.173984528 },

"P5" : { "Date" : "2021-07-30 00:00:00", "Open " : 1.173984528, "High" : 1.174398184, "Low" : 1.173984528, "Close" : 1.173984528 },

"P6" : { "Date" : "2021-08-02 00:00:00", "Open " : 1.173984528, "High" : 1.174260259, "Low" : 1.173984528, "Close" : 1.173984528 },

"P7" : { "Date" : "2021-08-03 00:00:00", "Open " : 1.173846722, "High" : 1.173984528, "Low" : 1.173846722, "Close" : 1.173984528 },

"P8" : { "Date" : "2021-08-04 00:00:00", "Open " : 1.173846722, "High" : 1.174260259, "Low" : 1.173846722, "Close" : 1.173846722 },

"P9" : { "Date" : "2021-08-05 00:00:00", "Open " : 1.174260259, "High" : 1.174260259, "Low" : 1.173984528, "Close" : 1.173984528 },

"P10" : { "Date" : "2021-08-06 00:00:00", "Open " : 1.173984528, "High" : 1.173984528, "Low" : 1.173984528, "Close" : 1.173984528 },

"P11" : { "Date" : "2021-08-07 00:00:00", "Open " : 1.173846722 }

}

response = client.future_movement_token(data)

Future Movement Correlation Algorithm Example

import thirtysevena as tsa

email = "name@email.com"
password = "notpassword"
licence = "e"

client = tsa.Client(email, password, licence)
client.login()

data = {

"Metadata" : { "A_Label" : "Asset 1", "B_Label" : "Asset 2", "Timeframe" : "Daily"},

"A_P1" : { "Date" : "2000-01-01 00:00:00", "Open" : 364.02, "High" : 364.31, "Low" : 364.01, "Close" : 364.31 },

"A_P2" : { "Date" : "2000-01-02 00:00:00", "Open" : 364.31, "High" : 364.58, "Low" : 364.01, "Close" : 364.01 },

"A_P3" : { "Date" : "2000-01-03 00:00:00", "Open" : 364.01, "High" : 364.21, "Low" : 364.01, "Close" : 364.11 },

"B_P1" : { "Date" : "2000-01-01 00:00:00", "Open" : 364.02, "High" : 364.31, "Low" : 364.01, "Close" : 364.31 },

"B_P2" : { "Date" : "2000-01-02 00:00:00", "Open" : 364.31, "High" : 364.58, "Low" : 364.01, "Close" : 364.01 },

"B_P3" : { "Date" : "2000-01-03 00:00:00", "Open" : 364.01, "High" : 364.21, "Low" : 364.01, "Close" : 364.11 }

}

response = client.correlation(data)

License

Copyright 2021 37AUSTEN

This repository is licensed under MIT license. See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thirtysevena-1.0.tar.gz (6.8 kB view details)

Uploaded Source

File details

Details for the file thirtysevena-1.0.tar.gz.

File metadata

  • Download URL: thirtysevena-1.0.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.5

File hashes

Hashes for thirtysevena-1.0.tar.gz
Algorithm Hash digest
SHA256 cab51f1f632df9ae56bd2d0d7ab0d4dc204c214494b50412cd70dd26f99287eb
MD5 0c5d052b8ee0cd79cef23e677099ec0f
BLAKE2b-256 56f19af0d6b8ff7d9baca9a5b8241841f54cdc56f4615ced76cc9aafa801a9fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page