Skip to main content

Torch - Higher Order Interactions

Project description

THOI: Torch - Higher Order Interactions

THOI Logo

Description

THOI is a Python package designed to compute O information in Higher Order Interactions using batch processing. This package leverages PyTorch for efficient tensor operations.

Installation

Prerequisites

Ensure you have Python 3.6 or higher installed.

Installing THOI with your prefered Versions of PyTorch

Because PyTorch installation can depend on the user environment and requirements (GPU or CPU support or a specific version of PyTorch), you need to install PyTorch separately before installing THOI. Follow these steps:

  1. Visit the official PyTorch installation guide:

    • Go to the PyTorch website and navigate to the "Get Started" page.
    • Select your preferences for the following options:
      • PyTorch Build: Stable or LTS (long-term support)
      • Your Operating System: Linux, Mac, or Windows
      • Package: Pip (recommended)
      • Language: Python
      • Compute Platform: CPU, CUDA 10.2, CUDA 11.1, etc.
  2. Get the Installation Command:

    • Based on your selections, the PyTorch website will provide the appropriate installation command.

    • For example, for the CPU-only version, the command will look like this:

      pip install torch==1.8.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
      
    • For the GPU version with CUDA 11.1, the command will look like this:

      pip install torch==1.8.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
      
  3. Install PyTorch:

    • Copy and run the command provided by the PyTorch website in your terminal.
  4. Install THOI:

    • Once PyTorch is installed, install THOI using:

      pip install thoi
      

Usage

After installation, you can start using THOI in your projects. Here is a simple example:

from thoi.measures.gaussian_copula import multi_order_measures, nplets_measures
from thoi.heuristics import simulated_annealing, greedy
import numpy as np

X = np.random.normal(0,1, (1000, 10))

# Computation of O information for the nplet that consider all the variables of X
measures = nplets_measures(X)

# Computation of O info for a single nplet (it must be a list of nplets even if it is a single nplet)
measures = nplets_measures(X, [[0,1,3]])

# Computation of O info for multiple nplets
measures = nplets_measures(X, [[0,1,3],[3,7,4],[2,6,3]])

# Extensive computation of O information measures over all combinations of features in X
measures = multi_order_measures(X)

# Compute the best 10 combinations of features (nplet) using greedy, starting by exaustive search in 
# lower order and building from there. Result shows best O information for 
# each built optimal orders
best_nplets, best_scores = greedy(X, 3, 5, repeat=10)

# Compute the best 10 combinations of features (nplet) using simulated annealing: There are two initialization options
# 1. Starting by a custom initial solution with shape (repeat, order) explicitely provided by the user.
# 2. Selecting random samples from the order.
# Result shows best O information for each built optimal orders
best_nplets, best_scores = simulated_annealing(X, 5, repeat=10)

For detailed usage and examples, please refer to the documentation.

Contributing

We welcome contributions from the community. If you encounter any issues or have suggestions for improvements, please open an issue or submit a pull request on GitHub.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Citation

If you use the thoi library in a scientific project, please cite it using one of the following formats:

BibTeX

@misc{thoi,
  author       = {Laouen Belloli and Rubén Herzog},
  title        = {THOI: An efficient library for higher order interactions analysis based on Gaussian copulas enhanced by batch-processing},
  year         = {2024},
  url          = {https://pypi.org/project/thoi/}
}

APA Belloli, L., & Herzog, R. (2023). THOI: An efficient library for higher order interactions analysis based on Gaussian copulas enhanced by batch-processing. Retrieved from https://pypi.org/project/thoi/

MLA Belloli, Laouen, and Rubén Herzog. THOI: An efficient library for higher order interactions analysis based on Gaussian copulas enhanced by batch-processing. 2023. Web. https://pypi.org/project/thoi/.

Authors

For more details, visit the GitHub repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thoi-0.2.0.tar.gz (11.2 MB view details)

Uploaded Source

Built Distribution

thoi-0.2.0-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file thoi-0.2.0.tar.gz.

File metadata

  • Download URL: thoi-0.2.0.tar.gz
  • Upload date:
  • Size: 11.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for thoi-0.2.0.tar.gz
Algorithm Hash digest
SHA256 648d3a089af740f84a1caa081a8738b011953c110083953731ebfe4fe8d6f1f1
MD5 42ba1cfa7cc05395178193fd9333c492
BLAKE2b-256 cc8c0e1fa6eba9c62bef57c588e61d66ad7e63851e440bab296fc7cf8cdde46a

See more details on using hashes here.

File details

Details for the file thoi-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: thoi-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for thoi-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cf1e47f99e89279b59a74be446e366a595dbfdc1a7659d2249ea706f3cd1b6a9
MD5 4291f3fd4c6e898c7f4c3fac5ff527ef
BLAKE2b-256 a6f1881a58bfc5c1f701fbaaffac4adaafa65a325210549a8b3e6c674230e2a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page