Thread batch with timeout - return values in dict
Project description
Thread batch with timeout - return values in dict
- import threadingbatch
- add the decorator @threadingbatch.thread_capture to your function
- add *args, **kwargs to your function
- create a list of lists with all function calls
- call threadingbatch.start_all_threads
- get the results from threadingbatch.results
$ pip install threadingbatch
from kthread_sleep import sleep # killing might not work with time.sleep ( pip install kthread-sleep )
import threadingbatch
import random
@threadingbatch.thread_capture # The threaded function must be decorated
def test(
testnumber, *args, **kwargs
): # a threaded function must have *args, **kwargs and can't have the keyword argument _starttime
print(f"start {testnumber}")
sleep(1)
v = random.randrange(1, 30)
print(f"end {testnumber}")
return v
flist = []
for ini, k in enumerate(range(20)): # creating 20 function calls
flist.append(
[
test, # function
(), # args
{"testnumber": ini}, # kwargs
f"function_{str(ini)}", # key in threadingbatch.results (must be unique and type str), the key can't have the name "done"
]
)
flistt = threadingbatch.start_all_threads(
flist,
threadtlimit=5, # number of simultaneously executed threads
timeout=4, # call Kthread.kill after n seconds
sleepafterkill=0.02, # sleep time after calling Kthread.kill
sleepafterstart=0.02, # sleep time after starting a thread
ignore_exceptions=False,
verbose=False,
)
while not threadingbatch.results[
"done"
]: # when all threads are done, threadingbatch.results['done'] changes to True
pass
sleep(0.1)
# output:
# start 0
# start 1
# start 2
# start 3
# start 4
# start 5
# end 0
# start 6
# end 1
# start 7
# end 2
# start 8
# end 3
# ....
print(threadingbatch.results)
# defaultdict(<function threadingbatch.<lambda>()>,
# {'done': True,
# 'function_19': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 11, 'realstart': 1673158006.740858}),
# 'function_18': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 23, 'realstart': 1673158006.4810376}),
# 'function_17': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 14, 'realstart': 1673158005.2808566}),
# 'function_16': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 1, 'realstart': 1673158005.1208546}),
# 'function_15': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 4, 'realstart': 1673158005.0807495}),
# 'function_14': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 23, 'realstart': 1673158004.7609262}),
# 'function_13': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 15, 'realstart': 1673158004.7207859}),
# 'function_12': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 4, 'realstart': 1673158004.5210721}),
# 'function_11': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 15, 'realstart': 1673158002.9808593}),
# 'function_10': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 4, 'realstart': 1673158002.941067}),
# 'function_9': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 20, 'realstart': 1673158002.9007895}),
# 'function_8': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 29, 'realstart': 1673158002.420729}),
# 'function_7': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 6, 'realstart': 1673158002.3609126}),
# 'function_6': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 16, 'realstart': 1673158002.3207767}),
# 'function_5': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 1, 'realstart': 1673158000.5775528}),
# 'function_4': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 18, 'realstart': 1673158000.5409462}),
# 'function_3': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 23, 'realstart': 1673158000.5010219}),
# 'function_2': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 14, 'realstart': 1673158000.4609187}),
# 'function_1': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 10, 'realstart': 1673158000.420832}),
# 'function_0': defaultdict(<function threadingbatch.<lambda>()>,
# {'results': 12, 'realstart': 1673158000.370694})})
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
threadingbatch-0.10.tar.gz
(6.0 kB
view details)
Built Distribution
File details
Details for the file threadingbatch-0.10.tar.gz
.
File metadata
- Download URL: threadingbatch-0.10.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8c663a0711e8a045ae08f9f98dba12ee2d06e11d796baceec59b531ffccbcf8 |
|
MD5 | b65172f03ffb620bc3cae7a6663cab37 |
|
BLAKE2b-256 | 6bde49d92d81647a70e5930d1469ae70dc4db0f2b807e74874abafb067819c04 |
File details
Details for the file threadingbatch-0.10-py3-none-any.whl
.
File metadata
- Download URL: threadingbatch-0.10-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f8b3037663ef0701317a246dc17ec16dbb9fa7d8113498a14e33912d6562726 |
|
MD5 | 74b3ae33a911d37575392a3538752ecc |
|
BLAKE2b-256 | bb1eecc7e9a0c0102e278ddfea97dd6ee195712a9d7a5707343433169d86623f |