Skip to main content

Highly scalable inference of ancestral recombination graphs (ARGs)

Project description

Threads

Highly scalable inference of ancestral recombination graphs (ARGs)

Installation

pip install threads_arg

Usage

ARG inference

You will need

  • genotypes in pgen format
  • list of variants in bim or pvar format (with the same prefix as the pgen)
  • genetic map with 4 columns: Chromosome, SNP, cM, bp
  • demography file with two columns: generations in the past, effective population size in haploids

Minimal usage using the provided example data:

threads infer \
    --pgen example/example_data.pgen \
    --map_gz example/example_data.map \
    --demography example/Ne10000.demo \
    --out example/example_data.threads

threads convert \
    --threads example/example_data.threads \
    --argn example/example_data.argn

This will write a .threads file to path/to/output.threads.

threads infer accepts more options:

threads infer \
    --pgen path/to/input.pgen \
    --map_gz path/to/genetic_map.gz \
    --demography path/to/demography \
    --out path/to/output.threads \
    --modality [wgs|array] (default: wgs) \
    --query_interval (default: 0.01) \
    --match_group_interval (default: 0.5) \
    --max_sample_batch_size (default: None) \
    --mutation_rate (default: 1.4e-8) \
    --region 1234-56789 (default: whole region, end-inclusive) \
    --num_threads 8 (default: 1)

--modality array can be set for inference from arrays.

--query_interval and --match_group_interval can be raised to save memory for inference over long genomic regions, this will have little impact on accuracy, especially for sparse variants.

The HMM mutation rate can be set with --mutation_rate. This defaults to a realistic human rate of 1.4e-8 per site per generation.

Specifying a --region start-end means the output ARG is truncated to those base-pair coordinates (end-inclusive). The whole input set will still be used for inference.

Parallelism can be enabled by specifying --num_threads

ARG conversion

.threads files can be converted to .argn and .tsz using

threads convert \
    --threads arg.threads \
    --argn arg.argn

and

threads convert \
    --threads arg.threads \
    --tsz arg.tsz

Phasing/imputation/variant mapping

These functions are in an experimental stage and will be released later.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

threads_arg-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (295.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

threads_arg-0.1.0-cp312-cp312-macosx_11_0_arm64.whl (255.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

threads_arg-0.1.0-cp312-cp312-macosx_10_15_x86_64.whl (281.3 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

threads_arg-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (295.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

threads_arg-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (254.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

threads_arg-0.1.0-cp311-cp311-macosx_10_15_x86_64.whl (279.3 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

threads_arg-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (295.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

threads_arg-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (254.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

threads_arg-0.1.0-cp310-cp310-macosx_10_15_x86_64.whl (279.3 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

threads_arg-0.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (295.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

threads_arg-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (254.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

threads_arg-0.1.0-cp39-cp39-macosx_10_15_x86_64.whl (279.4 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

threads_arg-0.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (294.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

threads_arg-0.1.0-cp38-cp38-macosx_10_15_x86_64.whl (279.2 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file threads_arg-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c3ec28a26185ad45d17a138d94ef79ed22d9721f3bf44ad480b9e91f76224761
MD5 0dbd84b91d40c943c8dbb30db167f6e4
BLAKE2b-256 671cd4e34eb8542325cb00fab672e9d75d9835258d1b589402f486e0877ac1a5

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79fdd1d93cd6a253e8bcb81b96131a37f343c342e4962b02b318961289428fe2
MD5 20834ee6527c4a30204b1cbe5132d7a7
BLAKE2b-256 59ebc4cbed73c9396400395795292e9c3e3bd83f85bac41bdec321c98dbd0c67

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 81ea447b4a396e7fe51dced1b9873a96d23dcff2c0090ad713c031bc8d5ff0c7
MD5 5d45013a9cde17fa5d187da46fc24a11
BLAKE2b-256 bb7cf4280033018c3dfef3677b87c059f45a1f073b333413e222d3478b6f26ba

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0f2b07d43f8c843e51ce513844e8ab693b8d96abe2a8bd3b83c14946e806f1bc
MD5 8e549ba3896175527ec21b0d84960f64
BLAKE2b-256 d9a023a480e87fe4cebdf7f78144f8d8da893b6737f5c79bf1ab4ad77a5e5fb4

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 feaafbdef078cc41025422b04890460153bc3be6d10457808992840716543371
MD5 8246318ddd6ff10eb2b4bed38805890f
BLAKE2b-256 ebd7216ab35224c131eba45710f700e3aa77ff9db7c5739b2c3e618da8e62882

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 883a8f143067e796c4c4e8d921bad36cb4a278d1e93bed7e5d93be0fef490129
MD5 76b27ffa514ead37c4380f4d2c98a4b8
BLAKE2b-256 ca0650a15da3feac2c69b0c1942aaed77d4888bc1f536077f52f2886b31e302b

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 16fc3cccf28b7a7dab924e933b9a1e35ab62ff7c065368098c7025a4fb7324c8
MD5 237b37261ff56d3c662dcd26a4085aaa
BLAKE2b-256 0d0d220359907dbbd3314cc4ed825f35703818f827e16f8224366596f2bf195c

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 935ed6eecb8f2335fb61d960415367360b46bb2882637f11b6c4ee636e546d8e
MD5 aaaa22dc070f024e5562f3cf9fdff56e
BLAKE2b-256 1b90a9ebdcf72afa275b59e7e2d5e42579dd1b481b351100b3971ab59c229392

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3bdcb4dbc1b9a4abcb435c9634fd22c7133babba354ed59f93ca39f341e3eaa2
MD5 67c3f4e233c83c18c220057cf2cbb65c
BLAKE2b-256 2f3ad33b5ec0b3e27636a8b16d4d4617c05cd5ab9883a9d2346fdec98ee4484a

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 813fc494f9eda2e2e4035a1e08cae32ce87d2364c1a00abce3fe013a7cfbcd9e
MD5 67dff571a95461774b16cffa4b2fc262
BLAKE2b-256 9ba085865d31a7440e570abaf4b50a009a4ac966f4e8a7a3dec9c792fb40b900

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 631ebcf79b2a97a2a0d78c2912ffdfa4029b1b4945f4a9e988a6f9cd2583862b
MD5 ceb9b8b22aef23147abf2aa2e90a1d29
BLAKE2b-256 de8fd5472f22b1074cb9dfd44fffc6aefa3cbb080ce3645abbcdc8b47762d69a

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 587a863be4b0d34e6f01b7321b2c0bd36037c022788d9a5139827fc11c9e808e
MD5 256adb4b5125c8e74248f8402b4a3e13
BLAKE2b-256 abd925958be422db941be6f70762a6d7552b5ce3d66e397d35ab415760c9b291

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15716c2bbbeda528c89e29851c73840964e47568ea0eeb63b167678d165d03e2
MD5 792d73daa0ec0e729d3a631ecf208723
BLAKE2b-256 cda67d7387cdd0fb3ee4b20a1b06c057fcf8d148c2b8bb7ca77a6bd160896167

See more details on using hashes here.

File details

Details for the file threads_arg-0.1.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for threads_arg-0.1.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 99b877e302f54585a9fbdd851506371895d823e090b118ecbeaebf6940f873ef
MD5 9a3c8407e5a788a5a4ac968cdac22ec5
BLAKE2b-256 12134aa547b201291395b303e88a0f23e071497c00705777d081c9d01fefd1dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page