Skip to main content

这是本人学习清华大学70240403-200大数据机器学习课程的开源工作,包括对往期Assignment的实现、对Lecture的笔记与理解、对即将来的Project的实现等,欢迎各位同学一起学习一起讨论,对知识取得更好的理解。

Project description

THU-Coursework-Machine-Learning-for-Big-Data

This file will become your README and also the index of your documentation.

Developer Guide

如果你想加入我们一起开源作业,请阅读以下指南。

If you are new to using nbdev here are some useful pointers to get you started.

关于Quarto和nbdev一些需要配置的地方

nbdev_install_quarto
quarto install tinytex
quarto install chromium
sudo apt-get install librsvg2-bin

关于nbdev、quarto+pandoc 这一套系统支持和不支持的markdown与latex语法

Install THU_Coursework_Machine_Learning_for_Big_Data in Development mode

# make sure THU_Coursework_Machine_Learning_for_Big_Data package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to THU_Coursework_Machine_Learning_for_Big_Data
$ nbdev_prepare

Usage

我们在学习清华大学《大数据机器学习》以及《大数据分析》两门课程完成作业的同时,也形成了一个简单的机器学习与数据分析库,对李航《统计学习方法》上的部分代码做了实现和可视化,你可以通过安装我们的库来复用我们写的代码逻辑。

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/Open-Book-Studio/THU-Coursework-Machine-Learning-for-Big-Data.git

or from pypi

$ pip install thu_big_data_ml

Documentation

Documentation can be found hosted on this https://thu-coursework-machine-learning-for-big-data-docs.vercel.app/ . Additionally you can find package manager specific guidelines on pypi respectively.

How to use

Fill me in please! Don’t forget code examples:

1+1
2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

thu_big_data_ml-0.0.2.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

thu_big_data_ml-0.0.2-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file thu_big_data_ml-0.0.2.tar.gz.

File metadata

  • Download URL: thu_big_data_ml-0.0.2.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for thu_big_data_ml-0.0.2.tar.gz
Algorithm Hash digest
SHA256 2ef17308fcd6feae736b06d3e2d45d2936207d4c564e1b67c4ee66784e6b3205
MD5 62ede0319e22790f425983c5389b898f
BLAKE2b-256 8d3c57cf24c3d0d30f118eae1f7f62acbbbc2e9b9759ffbd73ab897365328bec

See more details on using hashes here.

File details

Details for the file thu_big_data_ml-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for thu_big_data_ml-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2db90fe92dbe3b93896e9ecf0834c043e35b5cc42f70bf9a35360b6ccfcdc8df
MD5 c564398b693ae496d67aa6849f573f53
BLAKE2b-256 e648d6a45084d83825ccc982c0afb9ee2478b2ba5add4ab20025b1f5d42a0e5f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page