A Deep learning framework for scientific and educational purpose
Project description
THUNET: A simple deep learning framework for scientific and education purpose.
-
Neural networks[1]
-
Layers / Layer-wise ops
-
Add
-
Flatten
-
Multiply
-
Softmax
-
Fully-connected/Dense
-
Sparse evolutionary connections
-
LSTM
-
Elman-style RNN
-
Max + average pooling
-
Dot-product attention
-
Embedding layer
-
Restricted Boltzmann machine (w. CD-n training)
-
2D deconvolution (w. padding and stride)
-
2D convolution (w. padding, dilation, and stride)
-
1D convolution (w. padding, dilation, stride, and causality)
-
-
Modules
-
Bidirectional LSTM
-
ResNet-style residual blocks (identity and convolution)
-
WaveNet-style residual blocks with dilated causal convolutions
-
Transformer-style multi-headed scaled dot product attention
-
-
Regularizers
- Dropout
-
Normalization
-
Batch normalization (spatial and temporal)
-
Layer normalization (spatial and temporal)
-
-
Optimizers
-
SGD w/ momentum
-
AdaGrad
-
RMSProp
-
Adam
-
-
Learning Rate Schedulers
-
Constant
-
Exponential
-
Noam/Transformer
-
Dlib scheduler
-
-
Weight Initializers
-
Glorot/Xavier uniform and normal
-
He/Kaiming uniform and normal
-
Standard and truncated normal
-
-
Losses
-
Cross entropy
-
Squared error
-
Bernoulli VAE loss
-
Wasserstein loss with gradient penalty
-
Noise contrastive estimation loss
-
-
Activations
-
ReLU
-
Tanh
-
Affine
-
Sigmoid
-
Leaky ReLU
-
ELU
-
SELU
-
Exponential
-
Hard Sigmoid
-
Softplus
-
-
Models
-
Bernoulli variational autoencoder
-
Wasserstein GAN with gradient penalty
-
word2vec encoder with skip-gram and CBOW architectures
-
-
Utilities
-
col2im
(MATLAB port) -
im2col
(MATLAB port) -
conv1D
-
conv2D
-
deconv2D
-
minibatch
-
-
-
BERT
-
Vanilla BERT
-
Simple BERT
-
-
REFERENCE
Our contribution is implementation of the vanilla BERT and simple BERT.
All other codes following the licence claimed by (ddbourgin)[https://github.com/ddbourgin] in his (Numpy_ML)![https://github.com/ddbourgin/numpy-ml] project.
- Release Frequent Asked Questions
-
Q: Python2.7: LookupError: unknown encoding: cp0
-
A: Setting environment in the shell: set PYTHONIOENCODING=UTF-8
- Product Release
Supported Python versions:
| Python |
|--------|
| 2.7 |
| 3.5 |
| 3.6 |
| 3.7 |
| 3.8 |
| 3.9 |
| 3.10 |
[1] David Bourgin. Machine learning, in numpy. https://github.com/ddbourgin/numpy-ml.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file thunet-0.0.10.202209.tar.gz
.
File metadata
- Download URL: thunet-0.0.10.202209.tar.gz
- Upload date:
- Size: 109.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14b3f5f80c924580c97d72cd69be7604c7a2d29cf9c8c01a676953000b4a7d2a |
|
MD5 | 3444eec4588ad65cfe4b964530035477 |
|
BLAKE2b-256 | bae5dc2eed215a60bd84db1a3edf1e94f01675e6e83aa6b3d002a931b8a12ef9 |