Skip to main content

tianchi competition utils package

Project description

AI_HUB

AI utils for developer. such as notice、send massage when model training is over.Bind WeChat Official Account(AI_HUB) 插入在代码里的小工具,可以在模型训练结束时通过公众号及时发送微信消息给自己,提高科研效率。 inferServer: server your ai model as a API and match the tianchi eval 简单的操作把你训练好的模型变为服务API,并且支持天池大赛的流评测。

INSTALL

pip install ai-hub

SAMPLE

NOTICE

from ai_hub import notice
#到AGIHub微信公众号获取个人openid如(oM8pVuBWl8Rw_vFz7rZNgeO4T8H8),需替换为自己的openid
nc = notice("oM8pVuBWl8Rw_vFz7rZNgeO4T8H8")
#借助AGIHub公众号发送消息给自己
nc.sendmsg("hi,AI_HUB.I am su")

inferServer

'''
依赖:pip install ai-hub #(version>=0.1.7) 
测试用例:
model为y=2*x
请求数据为json:{"img":3}
-----------
post请求:
curl localhost:8080/tccapi -X POST -d '{"img":3}'
返回结果 6
'''
from ai_hub import inferServer
import json

class myInfer(inferServer):
    def __init__(self, model):
       	super().__init__(model)
        print("init_myInfer")

    #数据前处理
    def pre_process(self, data):
        print("my_pre_process")
        #json process
        json_data = json.loads(data.decode('utf-8'))
        img = json_data.get("img")
        print("processed data: ", img)
        return img

    #数据后处理
    def post_process(self, data):
        print("post_process")
        processed_data = data
        return processed_data

    #模型预测:默认执行self.model(preprocess_data),一般不用重写
    #如需自定义,可覆盖重写
    #def pridect(self, data):
    #    ret = self.model(data)
    #    return ret

if __name__ == "__main__":
    mymodel = lambda x: x * 2
    my_infer = myInfer(mymodel)
    my_infer.run(debuge=True) #默认为("127.0.0.1", 80),可自定义端口,如用于天池大赛请默认即可,指定debuge=True可获得更多报错信息

获取OPENID

1.扫描关注公众号AGIHub

avatar

2.发送“openid”给公众号 即可获得openid

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tianchi-0.0.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

tianchi-0.0.1-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file tianchi-0.0.1.tar.gz.

File metadata

  • Download URL: tianchi-0.0.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tianchi-0.0.1.tar.gz
Algorithm Hash digest
SHA256 db65e097446afa88644603e953e541335e3754837664a22a32665e1252acf6ab
MD5 22fab96275d898f8608b136b55b053f2
BLAKE2b-256 2b6a432a71a5cd94a5dcde26e3a562370e87c8038cb7fc8189523e011a8c6d57

See more details on using hashes here.

File details

Details for the file tianchi-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: tianchi-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tianchi-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c73f30424f04c43a5780ad9e6160589b2d63a8b45f6175ce99a65e147aec9135
MD5 6871deaca6d918573fd1df36cd0574ae
BLAKE2b-256 df9785f418e4bb69360709a00bcb2ae04b790473e86f522437594815e82296b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page