Skip to main content

Algorithms library for Tianmouc sensor

Project description

![PyPI - Version](https://img.shields.io/pypi/v/tianmoucv) ![PyPI - Wheel](https://img.shields.io/pypi/wheel/tianmoucv) ![PyPI - License](https://img.shields.io/pypi/l/tianmoucv) ![PyPI - Downloads](https://img.shields.io/pypi/dm/tianmoucv)

# TianMouCV-preview version

![usbmodule](/resources/usb_module.jpg)

The official version will be available at [tianmoucv/tianmocv](https://github.com/Tianmouc/tianmoucv)

This is the Python tool for the first complementary vision sensor (CVS), TianMouC.

More details about the project can be found on our project page. [doc](http://www.tianmouc.cn:38325)

## Installation

  1. Prepare pytorch environment

Python version should be larger than 3.8 and less than 3.12, recommend 3.10

`bash conda create -n [YOUR ENV NAME] --python=3.10 conda activate [YOUR ENV NAME] conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia `

  1. from PyPI

`bash pip install tianmoucv `

  1. Install from source codes (using pip):

`bash git clone git@github.com:Tianmouc/Tianmoucv_preview.git cd Tianmoucv_preview sh install.sh `

## Data

You can download a TianMouC data clip in [THU-sharelink](https://cloud.tsinghua.edu.cn/f/dc0d394efcb44af3b9b3/?dl=1), and refer to tianmoucv/exmaple/data/test_data_read.ipynb for a trial

a standard TianMouC dataset structure:

` ├── dataset │ ├── matchkey │ │ ├── cone │ │ ├── info.txt │ │ ├── xxx.tmdat │ │ ├── rod │ │ ├── info.txt │ │ ├── xxx.tmdat `

where matchkey is the sample name used for the TianMouC data reader

## Examples

For some of the algorithms we’ve provided the example in tianmoucv/example

Including:

  1. calculating optical flow

  2. reconstruct gray/hdr images

  3. key point matching/tracking

  4. camera calibration

  5. data reeader

These samples can be directly run on jupyter notebook

`bash conda activate [your environment] pip install jupyter notebook jupyter notebook `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tianmoucv-0.3.0-py3-none-any.whl (71.6 kB view details)

Uploaded Python 3

File details

Details for the file tianmoucv-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: tianmoucv-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 71.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for tianmoucv-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c44c5da606abe553c9a278e39a6d30aacd07d26ec21b0b35bc9b968d9ab228b8
MD5 c71c982679d1fb47ab6887faf9e1b457
BLAKE2b-256 4858be752ea8599acc1c4f466346f1f9100f1c5d980020dffd155f71ac0c3d13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page