Skip to main content

A Python client for TiDB Vector

Project description

tidb-vector-python

Use TiDB Vector Search with Python.

Usage

TiDB is a SQL database so that this package introduces Vector Search capability for Python ORMs:

Pick one that you are familiar with to get started. If you are not using any of them, we recommend #SQLAlchemy.

We also provide a Vector Search client for simple usage:

SQLAlchemy

Install:

pip install tidb-vector sqlalchemy pymysql

Usage:

from sqlalchemy import Integer, Column
from sqlalchemy import create_engine, select
from sqlalchemy.dialects.mysql import LONGTEXT
from sqlalchemy.orm import Session, declarative_base

import tidb_vector
from tidb_vector.sqlalchemy import VectorType, VectorAdaptor

engine = create_engine("mysql+pymysql://root@127.0.0.1:4000/test")
Base = declarative_base()


# Define table schema
class Doc(Base):
    __tablename__ = "doc"
    id = Column(Integer, primary_key=True)
    embedding = Column(VectorType(dim=3))
    content = Column(LONGTEXT)


# Create empty table
Base.metadata.drop_all(engine)  # clean data from last run
Base.metadata.create_all(engine)

# Create index for L2 distance
VectorAdaptor(engine).create_vector_index(
    Doc.embedding, tidb_vector.DistanceMetric.L2, skip_existing=True
    # For cosine distance, use tidb_vector.DistanceMetric.COSINE
)

# Insert content with vectors
with Session(engine) as session:
    session.add(Doc(id=1, content="dog", embedding=[1, 2, 1]))
    session.add(Doc(id=2, content="fish", embedding=[1, 2, 4]))
    session.add(Doc(id=3, content="tree", embedding=[1, 0, 0]))
    session.commit()

# Perform Vector Search for Top K=1
with Session(engine) as session:
    results = session.execute(
        select(Doc.id, Doc.content)
        .order_by(Doc.embedding.l2_distance([1, 2, 3]))
        # For cosine distance, use Doc.embedding.cosine_distance(...)
        .limit(1)
    ).all()
    print(results)

# Perform filtered Vector Search by adding a Where Clause:
with Session(engine) as session:
    results = session.execute(
        select(Doc.id, Doc.content)
        .where(Doc.content == "dog")
        .order_by(Doc.embedding.l2_distance([1, 2, 3]))
        .limit(1)
    ).all()
    print(results)

Peewee

Install:

pip install tidb-vector peewee pymysql

Usage:

import tidb_vector
from peewee import Model, MySQLDatabase, IntegerField, TextField
from tidb_vector.peewee import VectorField, VectorAdaptor

db = MySQLDatabase(
    database="test",
    user="root",
    password="",
    host="127.0.0.1",
    port=4000,
)


# Define table schema
class Doc(Model):
    class Meta:
        database = db
        table_name = "peewee_test"

    id = IntegerField(primary_key=True)
    embedding = VectorField(3)
    content = TextField()


# Create empty table and index for L2 distance
db.drop_tables([Doc])  # clean data from last run
db.create_tables([Doc])
# For cosine distance, use tidb_vector.DistanceMetric.COSINE
VectorAdaptor(db).create_vector_index(Doc.embedding, tidb_vector.DistanceMetric.L2)

# Insert content with vectors
Doc.insert_many(
    [
        {"id": 1, "content": "dog", "embedding": [1, 2, 1]},
        {"id": 2, "content": "fish", "embedding": [1, 2, 4]},
        {"id": 3, "content": "tree", "embedding": [1, 0, 0]},
    ]
).execute()

# Perform Vector Search for Top K=1
cursor = (
    Doc.select(Doc.id, Doc.content)
    # For cosine distance, use Doc.embedding.cosine_distance(...)
    .order_by(Doc.embedding.l2_distance([1, 2, 3]))
    .limit(1)
)
for row in cursor:
    print(row.id, row.content)


# Perform filtered Vector Search by adding a Where Clause:
cursor = (
    Doc.select(Doc.id, Doc.content)
    .where(Doc.content == "dog")
    .order_by(Doc.embedding.l2_distance([1, 2, 3]))
    .limit(1)
)
for row in cursor:
    print(row.id, row.content)

Django

[!TIP]

Django is a full-featured web framework, not just an ORM. The following usage introducutions are provided for existing Django users.

For new users to get started, consider using SQLAlchemy or Peewee.

Install:

pip install 'django-tidb[vector]~=5.0.0' 'django~=5.0.0'  mysqlclient

Usage:

1. Configure django_tidb as engine, like:

DATABASES = {
    'default': {
        'ENGINE': 'django_tidb',
        'NAME': 'django',
        'USER': 'root',
        'PASSWORD': '',
        'HOST': '127.0.0.1',
        'PORT': 4000,
    },
}

2. Define a model with a vector field and vector index:

from django.db import models
from django_tidb.fields.vector import VectorField, VectorIndex, L2Distance

class Doc(models.Model):
    id = models.IntegerField(primary_key=True)
    embedding = VectorField(dimensions=3)
    content = models.TextField()
    class Meta:
        indexes = [VectorIndex(L2Distance("embedding"), name="idx")]

3. Insert data:

Doc.objects.create(id=1, content="dog", embedding=[1, 2, 1])
Doc.objects.create(id=2, content="fish", embedding=[1, 2, 4])
Doc.objects.create(id=3, content="tree", embedding=[1, 0, 0])

4. Perform Vector Search for Top K=1:

queryset = (
    Doc.objects
        .order_by(L2Distance("embedding", [1, 2, 3]))
        .values("id", "content")[:1]
)
print(queryset)

5. Perform filtered Vector Search by adding a Where Clause:

queryset = (
     Doc.objects
          .filter(content="dog")
          .order_by(L2Distance("embedding", [1, 2, 3]))
          .values("id", "content")[:1]
)
print(queryset)

For more details, see django-tidb.

TiDB Vector Client

Within the framework, you can directly utilize the built-in TiDBVectorClient, as demonstrated by integrations like Langchain and Llama index, to seamlessly interact with TiDB Vector. This approach abstracts away the need to manage the underlying ORM, simplifying your interaction with the vector store.

We provide TiDBVectorClient which is based on sqlalchemy, you need to use pip install tidb-vector[client] to install it.

Create a TiDBVectorClient instance:

from tidb_vector.integrations import TiDBVectorClient

TABLE_NAME = 'vector_test'
CONNECTION_STRING = 'mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_verify_cert=true&ssl_verify_identity=true'

tidb_vs = TiDBVectorClient(
    # the table which will store the vector data
    table_name=TABLE_NAME,
    # tidb connection string
    connection_string=CONNECTION_STRING,
    # the dimension of the vector, in this example, we use the ada model, which has 1536 dimensions
    vector_dimension=1536,
    # if recreate the table if it already exists
    drop_existing_table=True,
)

Bulk insert:

ids = [
    "f8e7dee2-63b6-42f1-8b60-2d46710c1971",
    "8dde1fbc-2522-4ca2-aedf-5dcb2966d1c6",
    "e4991349-d00b-485c-a481-f61695f2b5ae",
]
documents = ["foo", "bar", "baz"]
embeddings = [
    text_to_embedding("foo"),
    text_to_embedding("bar"),
    text_to_embedding("baz"),
]
metadatas = [
    {"page": 1, "category": "P1"},
    {"page": 2, "category": "P1"},
    {"page": 3, "category": "P2"},
]

tidb_vs.insert(
    ids=ids,
    texts=documents,
    embeddings=embeddings,
    metadatas=metadatas,
)

Query:

tidb_vs.query(text_to_embedding("foo"), k=3)

# query with filter
tidb_vs.query(text_to_embedding("foo"), k=3, filter={"category": "P1"})

Bulk delete:

tidb_vs.delete(["f8e7dee2-63b6-42f1-8b60-2d46710c1971"])

# delete with filter
tidb_vs.delete(["f8e7dee2-63b6-42f1-8b60-2d46710c1971"], filter={"category": "P1"})

Examples

There are some examples to show how to use the tidb-vector-python to interact with TiDB Vector in different scenarios.

for more examples, see the examples directory.

Contributing

Please feel free to reach out to the maintainers if you have any questions or need help with the project. Before contributing, please read the CONTRIBUTING.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tidb_vector-0.0.14.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

tidb_vector-0.0.14-py3-none-any.whl (21.9 kB view details)

Uploaded Python 3

File details

Details for the file tidb_vector-0.0.14.tar.gz.

File metadata

  • Download URL: tidb_vector-0.0.14.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.5.0

File hashes

Hashes for tidb_vector-0.0.14.tar.gz
Algorithm Hash digest
SHA256 a63f4af54bb91aea51ae55d8cb9528b7bd2d3838181d7978cf5fcadfa8ab2887
MD5 69938e06a8ba8996bf645b883109648e
BLAKE2b-256 d8fc039b05b6b9002e49e004958bc3fc9b4424bb5b44783da17ceae7d158d0dc

See more details on using hashes here.

File details

Details for the file tidb_vector-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: tidb_vector-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 21.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Darwin/23.5.0

File hashes

Hashes for tidb_vector-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 19f25d5c3fd024d4dbabac54d4f2920c19235a678b832f7a1c46a00b1bc990a3
MD5 7836a0bb010bbddcfe82f646e46762da
BLAKE2b-256 288341a82d7248f213ea800e65ab1733405070a8d13825f5756f1784e6553c3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page