Skip to main content

A tidier approach to pandas

Project description

TidyBear

A tidy approach to pandas.

Groupby and Summarise

import numpy as np
import pandas as pd

import tidybear as tb

df = pd.DataFrame({
    "gr": list("AAABBBB"),
    "x": [1, 2, 3, 7, 8, 8, 9],
    "y": [4, 5, 6, 1, 1, 1, 1],
    "z": [2, 4, 6, 0, 1, 2, 2]
})

with tb.GroupBy(df, "gr") as g:
    
    # built in statistcs
    g.n()
    g.sum("x", decimals=3)
    
    # multiple aggs to a single column
    g.agg("x", ["mean", "median"], decimals=3)
    
    # same agg across multiple columns using built in
    g.mean(["y", "z"], decimals=3)
    
    # multiple aggs across multiple columns
    g.agg(["y", "z"], ["median", "std"], decimals=1)
    
    # send a lambda function to agg
    g.agg("x", lambda x: len(x.unique()), name="n_distinct_x1")
    
    # Use 'temp' keyword to return series and use it later
    max_val = g.max("x", temp=True)
    min_val = g.min("x", temp=True)
    
    # create a custom stat directly
    g.stat("midpoint", (max_val + min_val) / 2)
    
    summary = g.summarise()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tidybear-0.0.2.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

tidybear-0.0.2-py3-none-any.whl (7.0 kB view details)

Uploaded Python 3

File details

Details for the file tidybear-0.0.2.tar.gz.

File metadata

  • Download URL: tidybear-0.0.2.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for tidybear-0.0.2.tar.gz
Algorithm Hash digest
SHA256 7a58440a021a1be212f3a2bbc60bb98bc731bc1b7fc9b2eaa2ba94fdf09c45f3
MD5 2e27e378cefdda34e9f42fa30699180c
BLAKE2b-256 203c2f1ba91c8c95099cf806b9ad2a034b7cf0235bab2743278f8dc467754a54

See more details on using hashes here.

File details

Details for the file tidybear-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tidybear-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 7.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for tidybear-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9e54c83c442431ba77d086cb0011b017b21b0d4748f747d1bd5cd6c8ea839694
MD5 453e78e3f8951d67f251370bc6f25766
BLAKE2b-256 8b8bc0a891e76990e3d3645643d018e8ba2ef93b340f9879c4ec6f7c77b112d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page