Skip to main content

Convert matplotlib figures into TikZ/PGFPlots. Version of tikzplotlib patched with additional patches.

Project description

tikzplotlib

The artist formerly known as matplotlib2tikz.

PyPi Version Packaging status PyPI pyversions DOI GitHub stars Downloads

Documentation Status awesome

gh-actions codecov LGTM Code style: black

This is a patched version of tikzplotlib, a Python tool for converting matplotlib figures into PGFPlots (PGF/TikZ) figures like

for native inclusion into LaTeX or ConTeXt documents.

This version contains patches from JasonGross/tikzplotlib/patched.

The output of tikzplotlib is in PGFPlots, a TeX library that sits on top of PGF/TikZ and describes graphs in terms of axes, data etc. Consequently, the output of tikzplotlib

  • retains more information,
  • can be more easily understood, and
  • is more easily editable

than raw TikZ output. For example, the matplotlib figure

import matplotlib.pyplot as plt
import numpy as np

plt.style.use("ggplot")

t = np.arange(0.0, 2.0, 0.1)
s = np.sin(2 * np.pi * t)
s2 = np.cos(2 * np.pi * t)
plt.plot(t, s, "o-", lw=4.1)
plt.plot(t, s2, "o-", lw=4.1)
plt.xlabel("time (s)")
plt.ylabel("Voltage (mV)")
plt.title("Simple plot $\\frac{\\alpha}{2}$")
plt.grid(True)

import tikzplotlib

tikzplotlib.save("test.tex")
import matplotlib as mpl

plt.close()
mpl.rcParams.update(mpl.rcParamsDefault)

--> (see above) gives

\begin{tikzpicture}

\definecolor{color0}{rgb}{0.886274509803922,0.290196078431373,0.2}
\definecolor{color1}{rgb}{0.203921568627451,0.541176470588235,0.741176470588235}

\begin{axis}[
axis background/.style={fill=white!89.8039215686275!black},
axis line style={white},
tick align=outside,
tick pos=left,
title={Simple plot \(\displaystyle \frac{\alpha}{2}\)},
x grid style={white},
xlabel={time (s)},
xmajorgrids,
xmin=-0.095, xmax=1.995,
xtick style={color=white!33.3333333333333!black},
y grid style={white},
ylabel={Voltage (mV)},
ymajorgrids,
ymin=-1.1, ymax=1.1,
ytick style={color=white!33.3333333333333!black}
]
\addplot [line width=1.64pt, color0, mark=*, mark size=3, mark options={solid}]
table {%
0 0
0.1 0.587785252292473
% [...]
1.9 -0.587785252292473
};
\addplot [line width=1.64pt, color1, mark=*, mark size=3, mark options={solid}]
table {%
0 1
0.1 0.809016994374947
% [...]
1.9 0.809016994374947
};
\end{axis}

\end{tikzpicture}

(Use get_tikz_code() instead of save() if you want the code as a string.)

Tweaking the plot is straightforward and can be done as part of your TeX work flow. The fantastic PGFPlots manual contains great examples of how to make your plot look even better.

Of course, not all figures produced by matplotlib can be converted without error. Notably, 3D plots don't work.

Installation

tikzplotlib is available from the Python Package Index, so simply do

pip install tikzplotlib

to install.

Usage

  1. Generate your matplotlib plot as usual.

  2. Instead of pyplot.show(), invoke tikzplotlib by

    import tikzplotlib
    
    tikzplotlib.save("mytikz.tex")
    # or
    tikzplotlib.save("mytikz.tex", flavor="context")
    

    to store the TikZ file as mytikz.tex.

  3. Add the contents of mytikz.tex into your TeX source code. A convenient way of doing so is via

    \input{/path/to/mytikz.tex}
    

    Also make sure that the packages for PGFPlots and proper Unicode support and are included in the header of your document:

    \usepackage[utf8]{inputenc}
    \usepackage{pgfplots}
    \DeclareUnicodeCharacter{2212}{}
    \usepgfplotslibrary{groupplots,dateplot}
    \usetikzlibrary{patterns,shapes.arrows}
    \pgfplotsset{compat=newest}
    

    or:

    \setupcolors[state=start]
    \usemodule[tikz]
    \usemodule[pgfplots]
    \usepgfplotslibrary[groupplots,dateplot]
    \usetikzlibrary[patterns,shapes.arrows]
    \pgfplotsset{compat=newest}
    \unexpanded\def\startgroupplot{\groupplot}
    \unexpanded\def\stopgroupplot{\endgroupplot}
    

    You can also get the code via:

    import tikzplotlib
    
    tikzplotlib.Flavors.latex.preamble()
    # or
    tikzplotlib.Flavors.context.preamble()
    
  4. [Optional] Clean up the figure before exporting to tikz using the clean_figure command.

    import matplotlib.pyplot as plt
    import numpy as np
    
    # ... do your plotting
    
    import tikzplotlib
    
    tikzplotlib.clean_figure()
    tikzplotlib.save("test.tex")
    

    The command will remove points that are outside the axes limits, simplify curves and reduce point density for the specified target resolution.

    The feature originated from the matlab2tikz project and is adapted to matplotlib.

Contributing

If you experience bugs, would like to contribute, have nice examples of what tikzplotlib can do, or if you are just looking for more information, then please visit tikzplotlib's GitHub page.

Testing

tikzplotlib has automatic unit testing to make sure that the software doesn't accidentally get worse over time. In test/, a number of test cases are specified. Those run through tikzplotlib and compare the output with a previously stored reference TeX file.

To run the tests, just check out this repository and type

pytest

License

tikzplotlib is published under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tikzplotlib_patched-0.10.1.post12.tar.gz (112.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tikzplotlib_patched-0.10.1.post12.tar.gz.

File metadata

File hashes

Hashes for tikzplotlib_patched-0.10.1.post12.tar.gz
Algorithm Hash digest
SHA256 323250a1978a71e00a6c5288f092360dcd8ea8d097deb897cb7616e6ac3ef3bb
MD5 d514e4e251fbd5a0b5c328942f963d37
BLAKE2b-256 290fe153f874bca5ef62758e4264b12f62af39f02a8c95e7593b7bd3771e7ca1

See more details on using hashes here.

File details

Details for the file tikzplotlib_patched-0.10.1.post12-py3-none-any.whl.

File metadata

File hashes

Hashes for tikzplotlib_patched-0.10.1.post12-py3-none-any.whl
Algorithm Hash digest
SHA256 9363f04cc685207a7272c889894e443d2b66d8bee0c735481a44c2bc3dfc1c6f
MD5 41a6102c45d3db99ac0351965581810b
BLAKE2b-256 f2891412fde760bc67965660123c58f70fc8f3752b52cf1a8856c5335821be35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page