Skip to main content

Pythonic interface to the TileDB array storage manager

Project description

TileDB logo

Build Status Anaconda download count badge

TileDB-Py

TileDB-Py is a Python interface to the TileDB Storage Engine.

Quick Links

Quick Installation

TileDB-Py is available from either PyPI with pip:

pip install tiledb

or from conda-forge with conda or mamba:

conda install -c conda-forge tiledb-py

Dataframes functionality (tiledb.from_pandas, Array.df[]) requires Pandas 1.0 or higher, and PyArrow 1.0 or higher.

Contributing

We welcome contributions, please see CONTRIBUTING.md for suggestions and development-build instructions. For larger features, please open an issue to discuss goals and approach in order to ensure a smooth PR integration and review process.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiledb-0.18.3.tar.gz (297.7 kB view details)

Uploaded Source

Built Distributions

tiledb-0.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tiledb-0.18.3-cp310-cp310-macosx_10_15_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tiledb-0.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tiledb-0.18.3-cp39-cp39-macosx_10_15_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tiledb-0.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tiledb-0.18.3-cp38-cp38-macosx_10_15_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tiledb-0.18.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tiledb-0.18.3-cp37-cp37m-macosx_10_15_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tiledb-0.18.3.tar.gz.

File metadata

  • Download URL: tiledb-0.18.3.tar.gz
  • Upload date:
  • Size: 297.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for tiledb-0.18.3.tar.gz
Algorithm Hash digest
SHA256 7ebb36047544c831f00f4fbc6804105ddd114fc963dccbb31f69d3bff3046954
MD5 199949f7831cc115fe06f6e43e06d0ce
BLAKE2b-256 89a62f63805b5b934e54344a06c5495248b1938edfea672b8e74f826e7d5a33e

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e56d81d3c1e316cd6cf2499d2409e8301b49842bb489d70571dbf51e703f16ba
MD5 f0e5ea62a67a0639541a563d6ce5433c
BLAKE2b-256 631d6e103b95964155f97d6b4589527c600d43a60681da3fd26252bb1b4d1c74

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5fc4f03489684c66622cca9d71aaad1c494b89dbbd21acf26247ff02918c6e19
MD5 08364f55ae3c1e0ef29c7989d50b901f
BLAKE2b-256 cf92d308be6fdeaa4f16c0d677ecd3e91e52666feb02d6ffb42bfbe12e8609de

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53260ac42a479f9881ff8fc6ead069be803549aef56446ada26081f03fec16f3
MD5 b1aaea699251cb92d77f332b2952ba98
BLAKE2b-256 a16c9f70f81a2c926491363a9be9b27038fa7b54673175f9c7cfbffa5c3ea41d

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8bf817a5208fb74706f5ce0bc714441c54337bd4469e547b8fcd70881066b005
MD5 5a6b8e7396235bd00457a05ba3fcd9d9
BLAKE2b-256 483233f3ac11e47fe011c91884a0477cb5422f7a02ab9422b6d6aeb7baf7eb30

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04d33a8df30470b7a7bf500b6428bf7ff6687619990ce7315ea6fcfb5094da3b
MD5 a2c1a52bc936e40c5363d2ddd3f491d5
BLAKE2b-256 5fa6559a13e555a0431de7666737ed10b2cdf79ca37748b4ddbef4952dfbeb3f

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3fe331a5406da7af2f6ea5b255638ae3ee47f1668d4e19670ba5e86f47356fa2
MD5 49c0227f81d846b955ca1ca197c1778d
BLAKE2b-256 3f06501f755f5cb34e34012f2c2b96e51cd32a90c2ad2a3838b504759f390850

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 525dcb42859820d92a5fce1456e9d9dabfa0cb2984d063c645ad58e98b7fa827
MD5 84bcf31645944641c036023dea2d4046
BLAKE2b-256 f7eaf79beeed24e7c06498d91c32c665851fac43bb5a820c626cea13fff33587

See more details on using hashes here.

File details

Details for the file tiledb-0.18.3-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tiledb-0.18.3-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1780825c70bb8366117f30345f60315332083ef6a32663a827aa71f5354ab6e4
MD5 15780ba7052183fb63e84201fd7fa8f8
BLAKE2b-256 02ddd6fd429e0e0c4f2b3dc13aaf9d3ee186c62dc7dc0f14ea75bcbf99bd1088

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page